BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 15000191)

  • 21. Loudness functions with air and bone conduction stimulation in normal-hearing subjects using a categorical loudness scaling procedure.
    Stenfelt S; Zeitooni M
    Hear Res; 2013 Jul; 301():85-92. PubMed ID: 23562775
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Middle ear ossicles motion at hearing thresholds with air conduction and bone conduction stimulation.
    Stenfelt S
    J Acoust Soc Am; 2006 May; 119(5 Pt 1):2848-58. PubMed ID: 16708943
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Third-window vibroplasty with an active middle ear implant: assessment of physiologic responses in a model of stapes fixation in Chinchilla lanigera.
    Lupo JE; Koka K; Jenkins HA; Tollin DJ
    Otol Neurotol; 2012 Apr; 33(3):425-31. PubMed ID: 22334156
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prosthetic reconstruction from the tympanic membrane to the stapes head or to the stapes footplate? A laser Doppler study.
    Alian WA; Majdalawieh OF; Van Wijhe RG; Ejnell H; Bance M
    J Otolaryngol Head Neck Surg; 2012 Apr; 41(2):84-93. PubMed ID: 22569008
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of a totally open oval window on bone conduction in otosclerosis.
    Arnold A; Fawzy T; Steinhoff HJ; Kiefer J; Arnold W
    Audiol Neurootol; 2011; 16(1):23-8. PubMed ID: 20516679
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Air, bone and soft tissue excitation of the cochlea in the presence of severe impediments to ossicle and window mobility.
    Perez R; Adelman C; Chordekar S; Ishai R; Sohmer H
    Eur Arch Otorhinolaryngol; 2015 Apr; 272(4):853-860. PubMed ID: 24452773
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Impact of a Cochlear Implant Electrode Array on the Middle Ear Transfer Function.
    Pazen D; Anagiotos A; Nünning M; Gostian AO; Ortmann M; Beutner D
    Ear Hear; 2017; 38(4):e241-e255. PubMed ID: 28207578
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of freezing and embalming of human cadaveric whole head specimens on bone conduction.
    Graf L; Arnold A; Blache S; Honegger F; Müller-Gerbl M; Stieger C
    Hear Res; 2023 Mar; 429():108700. PubMed ID: 36680872
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rupture pressures of membranes in the ear.
    Kringlebotn M
    Ann Otol Rhinol Laryngol; 2000 Oct; 109(10 Pt 1):940-4. PubMed ID: 11051434
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transmission of bone conducted sound - correlation between hearing perception and cochlear vibration.
    Eeg-Olofsson M; Stenfelt S; Taghavi H; Reinfeldt S; Håkansson B; Tengstrand T; Finizia C
    Hear Res; 2013 Dec; 306():11-20. PubMed ID: 24047594
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of round window stimulation using the floating mass transducer by intracochlear sound pressure measurements in human temporal bones.
    Nakajima HH; Dong W; Olson ES; Rosowski JJ; Ravicz ME; Merchant SN
    Otol Neurotol; 2010 Apr; 31(3):506-11. PubMed ID: 19841600
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The mechanism of direct stimulation of the cochlea by vibrating the round window.
    Perez R; Adelman C; Chordekar S; de Jong MA; Sohmer H
    J Basic Clin Physiol Pharmacol; 2014 Sep; 25(3):273-6. PubMed ID: 25046313
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Round Window Occlusion Affects Bone Conduction in Cadaver Heads.
    Chen K; Lyu H; Yin D; Yang L; Zhang T; Dai P
    Otol Neurotol; 2018 Aug; 39(7):e513-e517. PubMed ID: 29995003
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Hannover Coupler: Controlled Static Prestress in Round Window Stimulation With the Floating Mass Transducer.
    Müller M; Salcher R; Lenarz T; Maier H
    Otol Neurotol; 2017 Sep; 38(8):1186-1192. PubMed ID: 28657955
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The floating mass transducer at the round window: direct transmission or bone conduction?
    Arnold A; Kompis M; Candreia C; Pfiffner F; Häusler R; Stieger C
    Hear Res; 2010 May; 263(1-2):120-7. PubMed ID: 20005939
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Infrasound transmission in the human ear: Implications for acoustic and vestibular responses of the normal and dehiscent inner ear.
    Raufer S; Masud SF; Nakajima HH
    J Acoust Soc Am; 2018 Jul; 144(1):332. PubMed ID: 30075646
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bone conduction hearing in the Guinea pig and the effect of artificially induced middle ear lesions.
    Zhao M; Fridberger A; Stenfelt S
    Hear Res; 2019 Aug; 379():21-30. PubMed ID: 31039489
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stapes displacement and intracochlear pressure in response to very high level, low frequency sounds.
    Greene NT; Jenkins HA; Tollin DJ; Easter JR
    Hear Res; 2017 May; 348():16-30. PubMed ID: 28189837
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Differences in the perilymph fluid stimulation before and after experimental stapedotomy.
    Kwacz M; Mrówka M; Wysocki J
    Acta Bioeng Biomech; 2012; 14(2):67-73. PubMed ID: 22793978
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of auditory responses determined by acoustic stimulation and by mechanical round window stimulation at equivalent stapes velocities.
    Lee J; Seong K; Lee SH; Lee KY; Cho JH
    Hear Res; 2014 Aug; 314():65-71. PubMed ID: 24768763
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.