These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 15000353)
21. Influence of the model's degree of freedom on human body dynamics identification. Maita D; Venture G Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4609-12. PubMed ID: 24110761 [TBL] [Abstract][Full Text] [Related]
22. Limitations of functionally determined joint centers for the analysis of athletic human movement: a case study of the upper limb. Roosen A; Pain MT; Begon M J Appl Biomech; 2009 Nov; 25(4):281-92. PubMed ID: 20095449 [TBL] [Abstract][Full Text] [Related]
23. A new approach to accurate measurement of uniaxial joint angles based on a combination of accelerometers and gyroscopes. Dejnabadi H; Jolles BM; Aminian K IEEE Trans Biomed Eng; 2005 Aug; 52(8):1478-84. PubMed ID: 16119244 [TBL] [Abstract][Full Text] [Related]
24. LUBA: an assessment technique for postural loading on the upper body based on joint motion discomfort and maximum holding time. Kee D; Karwowski W Appl Ergon; 2001 Aug; 32(4):357-66. PubMed ID: 11461037 [TBL] [Abstract][Full Text] [Related]
25. Identification of isometric contractions based on High Density EMG maps. Rojas-Martínez M; Mañanas MA; Alonso JF; Merletti R J Electromyogr Kinesiol; 2013 Feb; 23(1):33-42. PubMed ID: 22819519 [TBL] [Abstract][Full Text] [Related]
26. Observational practice of relative but not absolute motion features in a single-limb multi-joint coordination task. Buchanan JJ; Ryu YU; Zihlman K; Wright DL Exp Brain Res; 2008 Nov; 191(2):157-69. PubMed ID: 18679664 [TBL] [Abstract][Full Text] [Related]
27. A computer algorithm for representing spatial-temporal structure of human motion and a motion generalization method. Park W; Chaffin DB; Martin BJ; Faraway JJ J Biomech; 2005 Nov; 38(11):2321-9. PubMed ID: 16154421 [TBL] [Abstract][Full Text] [Related]
28. A fast method for finding range of motion in the human joints. Arbabi E; Boulic R; Thalmann D Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5079-82. PubMed ID: 18003148 [TBL] [Abstract][Full Text] [Related]
29. Description and measurement of anatomical joint motion. Ishida A Front Med Biol Eng; 1993; 5(3):161-73. PubMed ID: 8280665 [TBL] [Abstract][Full Text] [Related]
30. Three-dimensional motion of the upper extremity joints during various activities of daily living. Aizawa J; Masuda T; Koyama T; Nakamaru K; Isozaki K; Okawa A; Morita S J Biomech; 2010 Nov; 43(15):2915-22. PubMed ID: 20727523 [TBL] [Abstract][Full Text] [Related]
31. State-space analysis of joint angle kinematics in normal treadmill walking. Schablowski-Trautmann M; Gerner HJ Biomed Tech (Berl); 2006 Dec; 51(5-6):294-8. PubMed ID: 17155863 [TBL] [Abstract][Full Text] [Related]
32. 3-D attitude representation of human joints: a standardization proposal. Woltring HJ J Biomech; 1994 Dec; 27(12):1399-414. PubMed ID: 7806549 [TBL] [Abstract][Full Text] [Related]
33. Simplified dynamics model of planar two-joint arm movements. Suzuki M; Yamazaki Y; Matsunami K J Biomech; 2000 Aug; 33(8):925-31. PubMed ID: 10828322 [TBL] [Abstract][Full Text] [Related]
34. Assessment of the functional method of hip joint center location subject to reduced range of hip motion. Piazza SJ; Erdemir A; Okita N; Cavanagh PR J Biomech; 2004 Mar; 37(3):349-56. PubMed ID: 14757454 [TBL] [Abstract][Full Text] [Related]
35. A marker-based measurement procedure for unconstrained wrist and elbow motions. Schmidt R; Disselhorst-Klug C; Silny J; Rau G J Biomech; 1999 Jun; 32(6):615-21. PubMed ID: 10332626 [TBL] [Abstract][Full Text] [Related]
36. Motion artifact reduction in photoplethysmography using independent component analysis. Kim BS; Yoo SK IEEE Trans Biomed Eng; 2006 Mar; 53(3):566-8. PubMed ID: 16532785 [TBL] [Abstract][Full Text] [Related]
37. Sensitivity of finite helical axis parameters to temporally varying realistic motion utilizing an idealized knee model. Johnson TS; Andriacchi TP; Erdman AG Proc Inst Mech Eng H; 2004; 218(2):89-100. PubMed ID: 15116896 [TBL] [Abstract][Full Text] [Related]
38. Real-time inverse kinematics for the upper limb: a model-based algorithm using segment orientations. Borbély BJ; Szolgay P Biomed Eng Online; 2017 Jan; 16(1):21. PubMed ID: 28095857 [TBL] [Abstract][Full Text] [Related]
39. Electrical manifestations of muscle fatigue during concentric and eccentric isokinetic knee flexion-extension movements. Molinari F; Knaflitz M; Bonato P; Actis MV IEEE Trans Biomed Eng; 2006 Jul; 53(7):1309-16. PubMed ID: 16830935 [TBL] [Abstract][Full Text] [Related]
40. A behavior-based inverse kinematics algorithm to predict arm prehension postures for computer-aided ergonomic evaluation. Wang X J Biomech; 1999 May; 32(5):453-60. PubMed ID: 10326998 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]