BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 15000370)

  • 21. [Finite element analysis of screw in percutaneous axial lumbosacral interbody fusion].
    Xu HG; Yang XM; Wu TL; Wang H; Chen XW; Wang LT; Jin S; Liu P
    Zhonghua Yi Xue Za Zhi; 2010 Jan; 90(3):153-6. PubMed ID: 20356547
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Does TLIF aggravate adjacent segmental degeneration more adversely than ALIF? A finite element study.
    Tang S
    Turk Neurosurg; 2012; 22(3):324-8. PubMed ID: 22665000
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interbody device endplate engagement effects on motion segment biomechanics.
    Buttermann GR; Beaubien BP; Freeman AL; Stoll JE; Chappuis JL
    Spine J; 2009 Jul; 9(7):564-73. PubMed ID: 19457722
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Total disc replacement positioning affects facet contact forces and vertebral body strains.
    Rundell SA; Auerbach JD; Balderston RA; Kurtz SM
    Spine (Phila Pa 1976); 2008 Nov; 33(23):2510-7. PubMed ID: 18978591
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Factors influencing stresses in the lumbar spine after the insertion of intervertebral cages: finite element analysis.
    Polikeit A; Ferguson SJ; Nolte LP; Orr TE
    Eur Spine J; 2003 Aug; 12(4):413-20. PubMed ID: 12955610
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Resistance of the lumbar spine against axial compression forces after implantation of three different posterior lumbar interbody cages.
    Krammer M; Dietl R; Lumenta CB; Kettler A; Wilke HJ; Büttner A; Claes L
    Acta Neurochir (Wien); 2001 Dec; 143(12):1217-22. PubMed ID: 11810385
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of an interspinous implant on loads in the lumbar spine.
    Rohlmann A; Zander T; Burra NK; Bergmann G
    Biomed Tech (Berl); 2005 Oct; 50(10):343-7. PubMed ID: 16300050
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biomechanical assessment of anterior lumbar interbody fusion with an anterior lumbosacral fixation screw-plate: comparison to stand-alone anterior lumbar interbody fusion and anterior lumbar interbody fusion with pedicle screws in an unstable human cadaver model.
    Gerber M; Crawford NR; Chamberlain RH; Fifield MS; LeHuec JC; Dickman CA
    Spine (Phila Pa 1976); 2006 Apr; 31(7):762-8. PubMed ID: 16582849
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Preliminary application of one-level posterior lumbar interbody fusion with prospace and facet fusion using local autograft.
    Long H; Kazunasa U; Liu S; Akio S; Taito I
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Nov; 21(11):1155-9. PubMed ID: 18069464
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis of pedicle and translaminar facet fixation in a multisegment interbody fusion model.
    Eskander M; Brooks D; Ordway N; Dale E; Connolly P
    Spine (Phila Pa 1976); 2007 Apr; 32(7):E230-5. PubMed ID: 17414898
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs.
    Papini M; Zdero R; Schemitsch EH; Zalzal P
    J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Disc mechanics with trans-endplate partial nucleotomy are not fully restored following cyclic compressive loading and unloaded recovery.
    Vresilovic EJ; Johannessen W; Elliott DM
    J Biomech Eng; 2006 Dec; 128(6):823-9. PubMed ID: 17154681
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Finite element analysis in adjacent segment degeneration after lumbar fusion.
    Yan JZ; Qiu GX; Wu ZH; Wang XS; Xing ZJ
    Int J Med Robot; 2011 Mar; 7(1):96-100. PubMed ID: 21284074
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In vitro study of biomechanical behavior of anterior and transforaminal lumbar interbody instrumentation techniques.
    Niemeyer TK; Koriller M; Claes L; Kettler A; Werner K; Wilke HJ
    Neurosurgery; 2006 Dec; 59(6):1271-6; discussion 1276-7. PubMed ID: 17277690
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biomechanical comparison of instrumented posterior lumbar interbody fusion with one or two cages by finite element analysis.
    Chiang MF; Zhong ZC; Chen CS; Cheng CK; Shih SL
    Spine (Phila Pa 1976); 2006 Sep; 31(19):E682-9. PubMed ID: 16946641
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Statistical factorial analysis on the poroelastic material properties sensitivity of the lumbar intervertebral disc under compression, flexion and axial rotation.
    Malandrino A; Planell JA; Lacroix D
    J Biomech; 2009 Dec; 42(16):2780-8. PubMed ID: 19796766
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Is one cage enough in posterior lumbar interbody fusion: a comparison of unilateral single cage interbody fusion to bilateral cages.
    Fogel GR; Toohey JS; Neidre A; Brantigan JW
    J Spinal Disord Tech; 2007 Feb; 20(1):60-5. PubMed ID: 17285054
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of effects of selected factors on inter-vertebral fusion-a simulation study.
    Wang X; Dumas GA
    Med Eng Phys; 2005 Apr; 27(3):197-207. PubMed ID: 15694602
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The clinical characteristics and risk factors for the adjacent segment degeneration in instrumented lumbar fusion.
    Min JH; Jang JS; Jung Bj; Lee HY; Choi WC; Shim CS; Choi G; Lee SH
    J Spinal Disord Tech; 2008 Jul; 21(5):305-9. PubMed ID: 18600137
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Finite element analysis of the spondylolysis in lumbar spine.
    Wang JP; Zhong ZC; Cheng CK; Chen CS; Yu CH; Chang TK; Wei SH
    Biomed Mater Eng; 2006; 16(5):301-8. PubMed ID: 17075165
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.