BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 15000691)

  • 41. The conformational preference of gramicidin channels is a function of lipid bilayer thickness.
    Mobashery N; Nielsen C; Andersen OS
    FEBS Lett; 1997 Jul; 412(1):15-20. PubMed ID: 9257681
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of the dipole potential of a bilayer lipid membrane on gramicidin channel dissociation kinetics.
    Rokitskaya TI; Antonenko YN; Kotova EA
    Biophys J; 1997 Aug; 73(2):850-4. PubMed ID: 9251801
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Investigation of Ion Channel Activities of Gramicidin A in the Presence of Ionic Liquids Using Model Cell Membranes.
    Ryu H; Lee H; Iwata S; Choi S; Kim MK; Kim YR; Maruta S; Kim SM; Jeon TJ
    Sci Rep; 2015 Jul; 5():11935. PubMed ID: 26189604
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Modulation of proton transfer in the water wire of dioxolane-linked gramicidin channels by lipid membranes.
    de Godoy CM; Cukierman S
    Biophys J; 2001 Sep; 81(3):1430-8. PubMed ID: 11509357
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Distinct Binding Properties of Neutravidin and Streptavidin Proteins to Biotinylated Supported Lipid Bilayers: Implications for Sensor Functionalization.
    Sut TN; Park H; Koo DJ; Yoon BK; Jackman JA
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35890865
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of phenylalanine substitutions in gramicidin A on the kinetics of channel formation in vesicles and channel structure in SDS micelles.
    Jordan JB; Easton PL; Hinton JF
    Biophys J; 2005 Jan; 88(1):224-34. PubMed ID: 15501932
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Photodynamic inactivation of gramicidin channels in bilayer lipid membranes: protective efficacy of singlet oxygen quenchers depends on photosensitizer location.
    Rokitskaya TI; Firsov AM; Kotova EA; Antonenko YN
    Biochemistry (Mosc); 2015 Jun; 80(6):745-51. PubMed ID: 26531019
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Angiotensin II-induced formation of ionic channels in bilayer lipid membranes.
    Hianik T; Laputková G
    Gen Physiol Biophys; 1991 Feb; 10(1):19-30. PubMed ID: 1714413
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Integrated microfluidic biosensing platform for simultaneous confocal microscopy and electrophysiological measurements on bilayer lipid membranes and ion channels.
    Schulze Greiving VC; de Boer HL; Bomer JG; van den Berg A; Le Gac S
    Electrophoresis; 2018 Feb; 39(3):496-503. PubMed ID: 29193178
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Voltage-dependent behavior of a "ball-and-chain" gramicidin channel.
    Woolley GA; Zunic V; Karanicolas J; Jaikaran AS; Starostin AV
    Biophys J; 1997 Nov; 73(5):2465-75. PubMed ID: 9370440
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Solvent drag across gramicidin channels demonstrated by microelectrodes.
    Pohl P; Saparov SM
    Biophys J; 2000 May; 78(5):2426-34. PubMed ID: 10777738
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Modeling negative cooperativity in streptavidin adsorption onto biotinylated microtubules.
    He S; Lam AT; Jeune-Smith Y; Hess H
    Langmuir; 2012 Jul; 28(29):10635-9. PubMed ID: 22765377
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mild conditions for releasing mono and bis-biotinylated macromolecules from immobilized streptavidin.
    Nguyen GH; Milea JS; Rai A; Smith CL
    Biomol Eng; 2005 Oct; 22(4):147-50. PubMed ID: 15886055
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Noncontact dipole effects on channel permeation. I. Experiments with (5F-indole)Trp13 gramicidin A channels.
    Busath DD; Thulin CD; Hendershot RW; Phillips LR; Maughan P; Cole CD; Bingham NC; Morrison S; Baird LC; Hendershot RJ; Cotten M; Cross TA
    Biophys J; 1998 Dec; 75(6):2830-44. PubMed ID: 9826605
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ion channels as tools to monitor lipid bilayer-membrane protein interactions: gramicidin channels as molecular force transducers.
    Andersen OS; Nielsen C; Maer AM; Lundbaek JA; Goulian M; Koeppe RE
    Methods Enzymol; 1999; 294():208-24. PubMed ID: 9916229
    [No Abstract]   [Full Text] [Related]  

  • 56. Transmembrane Signaling with Lipid-Bilayer Assemblies as a Platform for Channel-Based Biosensing.
    Sugawara M
    Chem Rec; 2018 Apr; 18(4):433-444. PubMed ID: 29135061
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Lipid bilayer electrostatic energy, curvature stress, and assembly of gramicidin channels.
    Lundbaek JA; Maer AM; Andersen OS
    Biochemistry; 1997 May; 36(19):5695-701. PubMed ID: 9153409
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Genistein can modulate channel function by a phosphorylation-independent mechanism: importance of hydrophobic mismatch and bilayer mechanics.
    Hwang TC; Koeppe RE; Andersen OS
    Biochemistry; 2003 Nov; 42(46):13646-58. PubMed ID: 14622011
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The interaction of phthalocyanine with planar lipid bilayers. Photodynamic inactivation of gramicidin channels.
    Rokitskaya TI; Antonenko YN; Kotova EA
    FEBS Lett; 1993 Aug; 329(3):332-5. PubMed ID: 7689977
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Formamidinium-induced dimer stabilization and flicker block behavior in homo- and heterodimer channels formed by gramicidin A and N-acetyl gramicidin A.
    Seoh SA; Busath DD
    Biophys J; 1993 Nov; 65(5):1817-27. PubMed ID: 7507714
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.