BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 15000707)

  • 1. Characterization of supported cylinder-planar germanium waveguide sensors with synchrotron infrared radiation.
    Vongsvivut J; Fernandez J; Ekgasit S; Braiman MS
    Appl Spectrosc; 2004 Feb; 58(2):143-51. PubMed ID: 15000707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication and characterization of molecular beam epitaxy grown thin-film GaAs waveguides for mid-infrared evanescent field chemical sensing.
    Charlton C; Giovannini M; Faist J; Mizaikoff B
    Anal Chem; 2006 Jun; 78(12):4224-7. PubMed ID: 16771554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Infrared evanescent field sensing with quantum cascade lasers and planar silver halide waveguides.
    Charlton C; Katzir A; Mizaikoff B
    Anal Chem; 2005 Jul; 77(14):4398-403. PubMed ID: 16013852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Supported planar germanium waveguides for infrared evanescent-wave sensing.
    Plunkett SE; Propst S; Braiman MS
    Appl Opt; 1997 Jun; 36(18):4055-61. PubMed ID: 18253426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New opportunities in micro- and macro-attenuated total reflection infrared spectroscopic imaging: spatial resolution and sampling versatility.
    Chan KL; Kazarian SG
    Appl Spectrosc; 2003 Apr; 57(4):381-9. PubMed ID: 14658633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diamonds are a spectroscopist's best friend: thin-film diamond mid-infrared waveguides for advanced chemical sensors/biosensors.
    Wang X; Karlsson M; Forsberg P; Sieger M; Nikolajeff F; Österlund L; Mizaikoff B
    Anal Chem; 2014 Aug; 86(16):8136-41. PubMed ID: 25032789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. alpha-Cyclodextrin-modified infrared chemical sensor for selective determination of tyrosine in biological fluids.
    Lee CJ; Yang J
    Anal Biochem; 2006 Dec; 359(1):124-31. PubMed ID: 17046708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intermolecular vibrational study in liquid water and ice by using far infrared spectroscopy with synchrotron radiation of MIRRORCLE 20.
    Miura N; Yamada H; Moon A
    Spectrochim Acta A Mol Biomol Spectrosc; 2010 Dec; 77(5):1048-53. PubMed ID: 20869910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance of the far-IR beamline of the 6 MeV tabletop synchrotron light source.
    Monirul Haque M; Yamada H; Moon A; Yamada M
    J Synchrotron Radiat; 2009 Mar; 16(Pt 2):299-306. PubMed ID: 19240343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Near-field imaging and nano-Fourier-transform infrared spectroscopy using broadband synchrotron radiation.
    Hermann P; Hoehl A; Patoka P; Huth F; Rühl E; Ulm G
    Opt Express; 2013 Feb; 21(3):2913-9. PubMed ID: 23481749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of germanium linear kinoform lenses at Diamond Light Source.
    Alianelli L; Sawhney KJ; Tiwari MK; Dolbnya IP; Stevens R; Jenkins DW; Loader IM; Wilson MC; Malik A
    J Synchrotron Radiat; 2009 May; 16(Pt 3):325-9. PubMed ID: 19395794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facing the challenge of biosample imaging by FTIR with a synchrotron radiation source.
    Petibois C; Piccinini M; Guidi MC; Marcelli A
    J Synchrotron Radiat; 2010 Jan; 17(1):1-11. PubMed ID: 20029106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fourier transform infrared imaging of human hair with a high spatial resolution without the use of a synchrotron.
    Chan KL; Kazarian SG; Mavraki A; Williams DR
    Appl Spectrosc; 2005 Feb; 59(2):149-55. PubMed ID: 15720754
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micro-Attenuated Total Reflection Fourier Transform Infrared (Micro ATR FT-IR) Spectroscopic Imaging with Variable Angles of Incidence.
    Wrobel TP; Vichi A; Baranska M; Kazarian SG
    Appl Spectrosc; 2015 Oct; 69(10):1170-4. PubMed ID: 26449810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication and characterization of high-contrast mid-infrared GeTe₄ channel waveguides.
    Mittal V; Aghajani A; Carpenter LG; Gates JC; Butement J; Smith PG; Wilkinson JS; Murugan GS
    Opt Lett; 2015 May; 40(9):2016-9. PubMed ID: 25927772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimating and correcting mie scattering in synchrotron-based microscopic fourier transform infrared spectra by extended multiplicative signal correction.
    Kohler A; Sulé-Suso J; Sockalingum GD; Tobin M; Bahrami F; Yang Y; Pijanka J; Dumas P; Cotte M; van Pittius DG; Parkes G; Martens H
    Appl Spectrosc; 2008 Mar; 62(3):259-66. PubMed ID: 18339231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lung cell fiber evanescent wave spectroscopic biosensing of inhalation health hazards.
    Riley MR; Lucas P; Le Coq D; Juncker C; Boesewetter DE; Collier JL; DeRosa DM; Katterman ME; Boussard-Plédel C; Bureau B
    Biotechnol Bioeng; 2006 Nov; 95(4):599-612. PubMed ID: 16900468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface functionalization of germanium ATR devices for use in FTIR-biosensors.
    Devouge S; Conti J; Goldsztein A; Gosselin E; Brans A; Voué M; De Coninck J; Homblé F; Goormaghtigh E; Marchand-Brynaert J
    J Colloid Interface Sci; 2009 Apr; 332(2):408-15. PubMed ID: 19150721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental ATR device for real-time FTIR imaging of living cells using brilliant synchrotron radiation sources.
    Mariangela CG; Seydou Y; Diego S; Sabine C; Augusto M; Petibois C
    Biotechnol Adv; 2013; 31(3):402-7. PubMed ID: 22178001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Derivation of a subtype-specific biochemical signature of endometrial carcinoma using synchrotron-based Fourier-transform infrared microspectroscopy.
    Kelly JG; Singh MN; Stringfellow HF; Walsh MJ; Nicholson JM; Bahrami F; Ashton KM; Pitt MA; Martin-Hirsch PL; Martin FL
    Cancer Lett; 2009 Feb; 274(2):208-17. PubMed ID: 18954939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.