BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 15001100)

  • 1. Purposeful patterns of spontaneous calcium transients in embryonic spinal neurons.
    Spitzer NC; Gu X
    Semin Cell Dev Biol; 1997 Feb; 8(1):13-9. PubMed ID: 15001100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spontaneous calcium transients regulate neuronal plasticity in developing neurons.
    Spitzer NC; Olson E; Gu X
    J Neurobiol; 1995 Mar; 26(3):316-24. PubMed ID: 7775965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinct aspects of neuronal differentiation encoded by frequency of spontaneous Ca2+ transients.
    Gu X; Spitzer NC
    Nature; 1995 Jun; 375(6534):784-7. PubMed ID: 7596410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Breaking the code: regulation of neuronal differentiation by spontaneous calcium transients.
    Gu X; Spitzer NC
    Dev Neurosci; 1997; 19(1):33-41. PubMed ID: 9078431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spontaneous activity: functions of calcium transients in neuronal differentiation.
    Spitzer NC
    Perspect Dev Neurobiol; 1995; 2(4):379-86. PubMed ID: 7757407
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specific frequencies of spontaneous Ca2+ transients upregulate GAD 67 transcripts in embryonic spinal neurons.
    Watt SD; Gu X; Smith RD; Spitzer NC
    Mol Cell Neurosci; 2000 Oct; 16(4):376-87. PubMed ID: 11085875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The patterns of spontaneous Ca2+ signals generated by ventral spinal neurons in vitro show time-dependent refinement.
    Sibilla S; Fabbro A; Grandolfo M; D'Andrea P; Nistri A; Ballerini L
    Eur J Neurosci; 2009 Apr; 29(8):1543-59. PubMed ID: 19419420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spontaneous neuronal calcium spikes and waves during early differentiation.
    Gu X; Olson EC; Spitzer NC
    J Neurosci; 1994 Nov; 14(11 Pt 1):6325-35. PubMed ID: 7965039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drosophila mushroom body Kenyon cells generate spontaneous calcium transients mediated by PLTX-sensitive calcium channels.
    Jiang SA; Campusano JM; Su H; O'Dowd DK
    J Neurophysiol; 2005 Jul; 94(1):491-500. PubMed ID: 15772240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activity-independent intracellular Ca2+ oscillations are spontaneously generated by ventral spinal neurons during development in vitro.
    Fabbro A; Pastore B; Nistri A; Ballerini L
    Cell Calcium; 2007 Apr; 41(4):317-29. PubMed ID: 16950510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Imaging and manipulating calcium transients in developing Xenopus spinal neurons.
    Spitzer NC; Borodinsky LN; Root CM
    Cold Spring Harb Protoc; 2013 Jul; 2013(7):653-64. PubMed ID: 23818661
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activity-dependent neuronal differentiation prior to synapse formation: the functions of calcium transients.
    Spitzer NC
    J Physiol Paris; 2002; 96(1-2):73-80. PubMed ID: 11755785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Depolarization promotes GAD 65-mediated GABA synthesis by a post-translational mechanism in neural stem cell-derived neurons.
    Gakhar-Koppole N; Bengtson CP; Parlato R; Horsch K; Eckstein V; Ciccolini F
    Eur J Neurosci; 2008 Jan; 27(2):269-83. PubMed ID: 18190521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Agrin regulates growth cone turning of Xenopus spinal motoneurons.
    Xu X; Fu AK; Ip FC; Wu CP; Duan S; Poo MM; Yuan XB; Ip NY
    Development; 2005 Oct; 132(19):4309-16. PubMed ID: 16141222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glutamate regulates neurite outgrowth of cultured descending brain neurons from larval lamprey.
    Ryan SK; Shotts LR; Hong SK; Nehra D; Groat CR; Armstrong JR; McClellan AD
    Dev Neurobiol; 2007 Feb; 67(2):173-88. PubMed ID: 17443781
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations.
    Ben-Ari Y; Gaiarsa JL; Tyzio R; Khazipov R
    Physiol Rev; 2007 Oct; 87(4):1215-84. PubMed ID: 17928584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction between hindbrain and spinal networks during the development of locomotion in zebrafish.
    Chong M; Drapeau P
    Dev Neurobiol; 2007 Jun; 67(7):933-47. PubMed ID: 17506502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developmental characteristics of AMPA receptors in chick lumbar motoneurons.
    Ni X; Sullivan GJ; Martin-Caraballo M
    Dev Neurobiol; 2007 Sep; 67(11):1419-32. PubMed ID: 17497695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Properties and mechanisms of spontaneous activity in the embryonic chick hindbrain.
    Hughes SM; Easton CR; Bosma MM
    Dev Neurobiol; 2009 Jul; 69(8):477-90. PubMed ID: 19263418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temporospatial coupling of networked synaptic activation of AMPA-type glutamate receptor channels and calcium transients in cultured motoneurons.
    Jahn K; Grosskreutz J; Haastert K; Ziegler E; Schlesinger F; Grothe C; Dengler R; Bufler J
    Neuroscience; 2006 Nov; 142(4):1019-29. PubMed ID: 16949760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.