These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 15001451)
1. Oxidative stress, renal infiltration of immune cells, and salt-sensitive hypertension: all for one and one for all. Rodríguez-Iturbe B; Vaziri ND; Herrera-Acosta J; Johnson RJ Am J Physiol Renal Physiol; 2004 Apr; 286(4):F606-16. PubMed ID: 15001451 [TBL] [Abstract][Full Text] [Related]
2. Effects of dietary salt on intrarenal angiotensin system, NAD(P)H oxidase, COX-2, MCP-1 and PAI-1 expressions and NF-kappaB activity in salt-sensitive and -resistant rat kidneys. Chandramohan G; Bai Y; Norris K; Rodriguez-Iturbe B; Vaziri ND Am J Nephrol; 2008; 28(1):158-67. PubMed ID: 17951998 [TBL] [Abstract][Full Text] [Related]
3. The role of renal microvascular disease and interstitial inflammation in salt-sensitive hypertension. Rodriguez-Iturbe B; Johnson RJ Hypertens Res; 2010 Oct; 33(10):975-80. PubMed ID: 20686485 [TBL] [Abstract][Full Text] [Related]
4. Overload proteinuria is followed by salt-sensitive hypertension caused by renal infiltration of immune cells. Alvarez V; Quiroz Y; Nava M; Pons H; Rodríguez-Iturbe B Am J Physiol Renal Physiol; 2002 Nov; 283(5):F1132-41. PubMed ID: 12372790 [TBL] [Abstract][Full Text] [Related]
5. Dietary nitrate attenuates oxidative stress, prevents cardiac and renal injuries, and reduces blood pressure in salt-induced hypertension. Carlström M; Persson AE; Larsson E; Hezel M; Scheffer PG; Teerlink T; Weitzberg E; Lundberg JO Cardiovasc Res; 2011 Feb; 89(3):574-85. PubMed ID: 21097806 [TBL] [Abstract][Full Text] [Related]
6. Intra-renal angiotensin II/AT1 receptor, oxidative stress, inflammation, and progressive injury in renal mass reduction. Vaziri ND; Bai Y; Ni Z; Quiroz Y; Pandian R; Rodriguez-Iturbe B J Pharmacol Exp Ther; 2007 Oct; 323(1):85-93. PubMed ID: 17636006 [TBL] [Abstract][Full Text] [Related]
7. Hypertension induced by aortic coarctation above the renal arteries is associated with immune cell infiltration of the kidneys. Rodriguez-Iturbe B; Quiroz Y; Kim CH; Vaziri ND Am J Hypertens; 2005 Nov; 18(11):1449-56. PubMed ID: 16280280 [TBL] [Abstract][Full Text] [Related]
8. Kidney immune cell infiltration and oxidative stress contribute to prenatally programmed hypertension. Stewart T; Jung FF; Manning J; Vehaskari VM Kidney Int; 2005 Nov; 68(5):2180-8. PubMed ID: 16221217 [TBL] [Abstract][Full Text] [Related]
9. [Role of renal inflammation in the physiopathology of salt-sensitive hypertension]. Castro Torres Y; Santos Portela AE; Garrido Bősze IM Arch Cardiol Mex; 2014; 84(3):211-7. PubMed ID: 25024004 [TBL] [Abstract][Full Text] [Related]
10. N-Acetylcysteine improves renal dysfunction, ameliorates kidney damage and decreases blood pressure in salt-sensitive hypertension. Tian N; Rose RA; Jordan S; Dwyer TM; Hughson MD; Manning RD J Hypertens; 2006 Nov; 24(11):2263-70. PubMed ID: 17053549 [TBL] [Abstract][Full Text] [Related]
11. The role of immune cells infiltrating the kidney in the pathogenesis of salt-sensitive hypertension. Rodríguez-Iturbe B; Quiroz Y; Herrera-Acosta J; Johnson RJ; Pons HA J Hypertens Suppl; 2002 Jun; 20(3):S9-14. PubMed ID: 12184057 [TBL] [Abstract][Full Text] [Related]
12. Mechanisms of disease: oxidative stress and inflammation in the pathogenesis of hypertension. Vaziri ND; Rodríguez-Iturbe B Nat Clin Pract Nephrol; 2006 Oct; 2(10):582-93. PubMed ID: 17003837 [TBL] [Abstract][Full Text] [Related]
13. Nitric oxide and superoxide interactions in the kidney and their implication in the development of salt-sensitive hypertension. Majid DS; Kopkan L Clin Exp Pharmacol Physiol; 2007 Sep; 34(9):946-52. PubMed ID: 17645645 [TBL] [Abstract][Full Text] [Related]
14. Melatonin reduces renal interstitial inflammation and improves hypertension in spontaneously hypertensive rats. Nava M; Quiroz Y; Vaziri N; Rodriguez-Iturbe B Am J Physiol Renal Physiol; 2003 Mar; 284(3):F447-54. PubMed ID: 12441307 [TBL] [Abstract][Full Text] [Related]
15. Simvastatin and losartan enhance nitric oxide and reduce oxidative stress in salt-induced hypertension. Bayorh MA; Ganafa AA; Eatman D; Walton M; Feuerstein GZ Am J Hypertens; 2005 Nov; 18(11):1496-502. PubMed ID: 16280288 [TBL] [Abstract][Full Text] [Related]
16. Benidipine, an anti-hypertensive drug, inhibits reactive oxygen species production in polymorphonuclear leukocytes and oxidative stress in salt-loaded stroke-prone spontaneously hypertensive rats. Matsubara M; Akizuki O; Ikeda J; Saeki K; Yao K; Sasaki K Eur J Pharmacol; 2008 Feb; 580(1-2):201-13. PubMed ID: 18048030 [TBL] [Abstract][Full Text] [Related]
17. Kallikrein gene transfer reduces renal fibrosis, hypertrophy, and proliferation in DOCA-salt hypertensive rats. Xia CF; Bledsoe G; Chao L; Chao J Am J Physiol Renal Physiol; 2005 Sep; 289(3):F622-31. PubMed ID: 15886273 [TBL] [Abstract][Full Text] [Related]
18. Impaired pressure natriuresis is associated with interstitial inflammation in salt-sensitive hypertension. Rodriguez-Iturbe B; Franco M; Johnson RJ Curr Opin Nephrol Hypertens; 2013 Jan; 22(1):37-44. PubMed ID: 23165109 [TBL] [Abstract][Full Text] [Related]
19. Early and sustained inhibition of nuclear factor-kappaB prevents hypertension in spontaneously hypertensive rats. Rodríguez-Iturbe B; Ferrebuz A; Vanegas V; Quiroz Y; Mezzano S; Vaziri ND J Pharmacol Exp Ther; 2005 Oct; 315(1):51-7. PubMed ID: 15951402 [TBL] [Abstract][Full Text] [Related]
20. Renal infiltration of immunocompetent cells: cause and effect of sodium-sensitive hypertension. Rodriguez-Iturbe B Clin Exp Nephrol; 2010 Apr; 14(2):105-11. PubMed ID: 20169462 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]