These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 15002135)

  • 1. Self-organization of carbide superlattice and nucleation of carbon nanotubes.
    Tsui F; Ryan PA
    J Nanosci Nanotechnol; 2003 Dec; 3(6):529-34. PubMed ID: 15002135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-organization of carbide superlattice and nucleation of carbon nanotubes.
    Tsui F; Ryan PA
    J Nanosci Nanotechnol; 2004 Apr; 4(4):408-13. PubMed ID: 15296230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of pile networks by long carbon nanotubes from decomposition of CO on Co-Mo film.
    Zhu YT; Egeland GW; Li Y; Jia QX; Gallegos J; Serquis A; Liao XZ; Peterson DE; Dye RC; Roop BJ; Hoffbauer MA
    J Nanosci Nanotechnol; 2004; 4(1-2):189-91. PubMed ID: 15112565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiwalled carbon nanotubes with molybdenum dioxide nanoplugs--new chemical nanoarchitectures by electrochemical modification.
    Jurkschat K; Wilkins SJ; Salter CJ; Leventis HC; Wildgoose GG; Jiang L; Jones TG; Crossley A; Compton RG
    Small; 2006 Jan; 2(1):95-8. PubMed ID: 17193562
    [No Abstract]   [Full Text] [Related]  

  • 5. Unravelling the mechanisms behind mixed catalysts for the high yield production of single-walled carbon nanotubes.
    Tetali S; Zaka M; Schönfelder R; Bachmatiuk A; Börrnert F; Ibrahim I; Lin JH; Cuniberti G; Warner JH; Büchner B; Rümmeli MH
    ACS Nano; 2009 Dec; 3(12):3839-44. PubMed ID: 19883094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ nucleation of carbon nanotubes by the injection of carbon atoms into metal particles.
    Rodríguez-Manzo JA; Terrones M; Terrones H; Kroto HW; Sun L; Banhart F
    Nat Nanotechnol; 2007 May; 2(5):307-11. PubMed ID: 18654289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms for catalytic CVD growth of multiwalled carbon nanotubes.
    Bajwa N; Li X; Ajayan PM; Vajtai R
    J Nanosci Nanotechnol; 2008 Nov; 8(11):6054-64. PubMed ID: 19198346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon nanotube guided formation of silicon oxide nanotrenches.
    Byon HR; Choi HC
    Nat Nanotechnol; 2007 Mar; 2(3):162-6. PubMed ID: 18654246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plumbing carbon nanotubes.
    Jin C; Suenaga K; Iijima S
    Nat Nanotechnol; 2008 Jan; 3(1):17-21. PubMed ID: 18654444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidation and thermal stability of linear carbon chains contained in thermally treated double-walled carbon nanotubes.
    Muramatsu H; Kim YA; Hayashi T; Endo M; Terrones M; Dresselhaus MS
    Small; 2007 May; 3(5):788-92. PubMed ID: 17393551
    [No Abstract]   [Full Text] [Related]  

  • 11. Effect of deposition pressure on the morphology and structural properties of carbon nanotubes synthesized by hot-filament chemical vapor deposition.
    Arendse CJ; Malgas GF; Scriba MR; Cummings FR; Knoesen D
    J Nanosci Nanotechnol; 2007 Oct; 7(10):3638-42. PubMed ID: 18330185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystallographic order in multi-walled carbon nanotubes synthesized in the presence of nitrogen.
    Ducati C; Koziol K; Friedrichs S; Yates TJ; Shaffer MS; Midgley PA; Windle AH
    Small; 2006 Jun; 2(6):774-84. PubMed ID: 17193122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A multi scale theoretical study of Li+ interaction with carbon nanotubes.
    Mpourmpakis G; Tylianakis E; Papanikolaou D; Froudakis GE
    J Nanosci Nanotechnol; 2006 Dec; 6(12):3731-5. PubMed ID: 17256322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasma-assembled carbon nanotubes: electric field-related effects.
    Levchenko I; Ostrikov K; Keidar M
    J Nanosci Nanotechnol; 2008 Nov; 8(11):6112-22. PubMed ID: 19198353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of the substrate surface morphology and water in growth of vertically aligned single-walled carbon nanotubes.
    Pint C; Pheasant S; Nicholas N; Horton C; Hauge R
    J Nanosci Nanotechnol; 2008 Nov; 8(11):6158-64. PubMed ID: 19198358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selection of carbon nanotubes with specific chiralities using helical assemblies of flavin mononucleotide.
    Ju SY; Doll J; Sharma I; Papadimitrakopoulos F
    Nat Nanotechnol; 2008 Jun; 3(6):356-62. PubMed ID: 18654547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The generation of domain boundaries in catalytically-grown carbon nanotubes.
    Dell'Acqua-Bellavitis LM; Ballard JD; Vajtai R; Ajayan PM; Siegel RW
    J Nanosci Nanotechnol; 2007 Jul; 7(7):2335-42. PubMed ID: 17663249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elastic properties of carbon nanotubes: an atomistic approach.
    Cherian R; Mahadevan P
    J Nanosci Nanotechnol; 2007 Jun; 7(6):1779-82. PubMed ID: 17654938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strong carbon-nanotube fibers spun from long carbon-nanotube arrays.
    Zhang X; Li Q; Tu Y; Li Y; Coulter JY; Zheng L; Zhao Y; Jia Q; Peterson DE; Zhu Y
    Small; 2007 Feb; 3(2):244-8. PubMed ID: 17262764
    [No Abstract]   [Full Text] [Related]  

  • 20. Controlled carbon-nanotube junctions self-assembled from graphene nanoribbons.
    He L; Lu JQ; Jiang H
    Small; 2009 Dec; 5(24):2802-6. PubMed ID: 19927297
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.