These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Transcriptome characterization of three wild Chinese Vitis uncovers a large number of distinct disease related genes. Jiao C; Gao M; Wang X; Fei Z BMC Genomics; 2015 Mar; 16(1):223. PubMed ID: 25888081 [TBL] [Abstract][Full Text] [Related]
24. Influence of Berry Heterogeneity on Phenolics and Antioxidant Activity of Grapes and Wines: A Primary Study of the New Winegrape Cultivar Meili (Vitis vinifera L.). Liu X; Li J; Tian Y; Liao M; Zhang Z PLoS One; 2016; 11(3):e0151276. PubMed ID: 26974974 [TBL] [Abstract][Full Text] [Related]
25. From grape berries to wine: population dynamics of cultivable yeasts associated to "Nero di Troia" autochthonous grape cultivar. Garofalo C; Tristezza M; Grieco F; Spano G; Capozzi V World J Microbiol Biotechnol; 2016 Apr; 32(4):59. PubMed ID: 26925621 [TBL] [Abstract][Full Text] [Related]
26. Xenia and metaxenia in grapes: differences in berry and seed characteristics of maternal grape cv. 'Narince' (Vitis vinifera L.) as influenced by different pollen sources. Sabir A Plant Biol (Stuttg); 2015 Mar; 17(2):567-73. PubMed ID: 25251333 [TBL] [Abstract][Full Text] [Related]
27. Comparison of extraction protocols to determine differences in wine-extractable tannin and anthocyanin in Vitis vinifera L. cv. Shiraz and Cabernet Sauvignon grapes. Bindon KA; Kassara S; Cynkar WU; Robinson EM; Scrimgeour N; Smith PA J Agric Food Chem; 2014 May; 62(20):4558-70. PubMed ID: 24773241 [TBL] [Abstract][Full Text] [Related]
28. Freezing resistance and behavior of winter buds and canes of wine grapes cultivated in northern Japan. Horiuchi R; Arakawa K; Kasuga J; Suzuki T; Jitsuyama Y Cryobiology; 2021 Aug; 101():44-51. PubMed ID: 34144014 [TBL] [Abstract][Full Text] [Related]
29. Relationships between harvest time and wine composition in Vitis vinifera L. cv. Cabernet Sauvignon 1. Grape and wine chemistry. Bindon K; Varela C; Kennedy J; Holt H; Herderich M Food Chem; 2013 Jun; 138(2-3):1696-705. PubMed ID: 23411300 [TBL] [Abstract][Full Text] [Related]
30. Drosophila suzukii (Diptera: Drosophilidae) and its Potential Impact to Wine Grapes During Harvest in Two Cool Climate Wine Grape Production Regions. Ioriatti C; Walton V; Dalton D; Anfora G; Grassi A; Maistri S; Mazzoni V J Econ Entomol; 2015 Jun; 108(3):1148-55. PubMed ID: 26470240 [TBL] [Abstract][Full Text] [Related]
31. Generation of ESTs in Vitis vinifera wine grape (Cabernet Sauvignon) and table grape (Muscat Hamburg) and discovery of new candidate genes with potential roles in berry development. Peng FY; Reid KE; Liao N; Schlosser J; Lijavetzky D; Holt R; Martínez Zapater JM; Jones S; Marra M; Bohlmann J; Lund ST Gene; 2007 Nov; 402(1-2):40-50. PubMed ID: 17761391 [TBL] [Abstract][Full Text] [Related]
32. Detection of ochratoxin A in tropical wine and grape juice from Brazil. Terra MF; Prado G; Pereira GE; Ematné HJ; Batista LR J Sci Food Agric; 2013 Mar; 93(4):890-4. PubMed ID: 22836915 [TBL] [Abstract][Full Text] [Related]
33. Effect of two different treatments for reducing grape yield in Vitis vinifera cv Syrah on wine composition and quality: berry thinning versus cluster thinning. Gil M; Esteruelas M; González E; Kontoudakis N; Jiménez J; Fort F; Canals JM; Hermosín-Gutiérrez I; Zamora F J Agric Food Chem; 2013 May; 61(20):4968-78. PubMed ID: 23627566 [TBL] [Abstract][Full Text] [Related]
34. Relationships between harvest time and wine composition in Vitis vinifera L. cv. Cabernet Sauvignon 2. Wine sensory properties and consumer preference. Bindon K; Holt H; Williamson PO; Varela C; Herderich M; Francis IL Food Chem; 2014 Jul; 154():90-101. PubMed ID: 24518320 [TBL] [Abstract][Full Text] [Related]
35. Red-color related phenolic composition of Garnacha Tintorera (Vitis vinifera L.) grapes and red wines. Castillo-Muñoz N; Fernández-González M; Gómez-Alonso S; García-Romero E; Hermosín-Gutiérrez I J Agric Food Chem; 2009 Sep; 57(17):7883-91. PubMed ID: 19673489 [TBL] [Abstract][Full Text] [Related]
36. Phenolic composition and antioxidant capacity of pomaces from four grape varieties (Vitis vinifera L.). de la Cerda-Carrasco A; López-Solís R; Nuñez-Kalasic H; Peña-Neira Á; Obreque-Slier E J Sci Food Agric; 2015 May; 95(7):1521-7. PubMed ID: 25082193 [TBL] [Abstract][Full Text] [Related]
37. Isolation of Neofusicoccum parvum from withered grapes: strain characterization, pathogenicity and its detrimental effects on passito wine aroma. Lorenzini M; Cappello MS; Zapparoli G J Appl Microbiol; 2015 Nov; 119(5):1335-44. PubMed ID: 26274522 [TBL] [Abstract][Full Text] [Related]
38. Melatonin treatment of pre-veraison grape berries to increase size and synchronicity of berries and modify wine aroma components. Meng JF; Xu TF; Song CZ; Yu Y; Hu F; Zhang L; Zhang ZW; Xi ZM Food Chem; 2015 Oct; 185():127-34. PubMed ID: 25952850 [TBL] [Abstract][Full Text] [Related]
39. Characterization of phenolic composition in Carignan noir grapes (Vitis vinifera L.) from six wine-growing sites in Maule Valley, Chile. Martínez-Gil AM; Gutiérrez-Gamboa G; Garde-Cerdán T; Pérez-Álvarez EP; Moreno-Simunovic Y J Sci Food Agric; 2018 Jan; 98(1):274-282. PubMed ID: 28585244 [TBL] [Abstract][Full Text] [Related]
40. Flavonol profiles of Vitis vinifera red grapes and their single-cultivar wines. Castillo-Muñoz N; Gómez-Alonso S; García-Romero E; Hermosín-Gutiérrez I J Agric Food Chem; 2007 Feb; 55(3):992-1002. PubMed ID: 17263504 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]