BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 15002674)

  • 1. Genotypic variation in the photosynthetic competence of Sorghum bicolor seedlings subjected to polyethylene glycol-mediated drought stress.
    Bhargava S; Paranjpe S
    J Plant Physiol; 2004 Jan; 161(1):125-9. PubMed ID: 15002674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Responses of Jatropha curcas L. seedlings to drought stress].
    Dou XY; Wu GJ; Huang HY; Hou YJ; Gu Q; Peng CL
    Ying Yong Sheng Tai Xue Bao; 2008 Jul; 19(7):1425-30. PubMed ID: 18839898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photosynthetic Responses to High Temperature and Strong Light Suggest Potential Post-flowering Drought Tolerance of Sorghum Japanese Landrace Takakibi.
    Ohnishi N; Wacera W F; Sakamoto W
    Plant Cell Physiol; 2019 Sep; 60(9):2086-2099. PubMed ID: 31147706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sorghum (Sorghum bicolor) varieties adopt strongly contrasting strategies in response to drought.
    Ogbaga CC; Stepien P; Johnson GN
    Physiol Plant; 2014 Oct; 152(2):389-401. PubMed ID: 24666264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of PEG-induced osmotic stress on growth and dhurrin levels of forage sorghum.
    O'Donnell NH; Møller BL; Neale AD; Hamill JD; Blomstedt CK; Gleadow RM
    Plant Physiol Biochem; 2013 Dec; 73():83-92. PubMed ID: 24080394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elevated CO2 increases water use efficiency by sustaining photosynthesis of water-limited maize and sorghum.
    Allen LH; Kakani VG; Vu JC; Boote KJ
    J Plant Physiol; 2011 Nov; 168(16):1909-18. PubMed ID: 21676489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proline over-accumulation alleviates salt stress and protects photosynthetic and antioxidant enzyme activities in transgenic sorghum [Sorghum bicolor (L.) Moench].
    Surender Reddy P; Jogeswar G; Rasineni GK; Maheswari M; Reddy AR; Varshney RK; Kavi Kishor PB
    Plant Physiol Biochem; 2015 Sep; 94():104-13. PubMed ID: 26065619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drought tolerance strategies highlighted by two Sorghum bicolor races in a dry-down experiment.
    Fracasso A; Trindade L; Amaducci S
    J Plant Physiol; 2016 Jan; 190():1-14. PubMed ID: 26624226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential responses of sorghum genotypes to sugarcane aphid feeding.
    Paudyal S; Armstrong JS; Giles KL; Hoback W; Aiken R; Payton ME
    Planta; 2020 Jul; 252(1):14. PubMed ID: 32621008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of polyethylene glycol induced drought stress on photosynthesis in two chickpea genotypes with different drought tolerance.
    Saglam A; Terzi R; Demiralay M
    Acta Biol Hung; 2014 Jun; 65(2):178-88. PubMed ID: 24873911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effects of Enhanced Ultraviolet B Irradiation on Photosynthetic and Antioxidant System of Sorghum Seedlings].
    Shi XX; Li Z; Yang KJ; Zhao CJ; Yang RB; Yu GB; Huang SG; Xu JY; He L; Zhao Y; Xu YM; Ma LF; Fan BW
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 May; 36(5):1389-95. PubMed ID: 30001012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptome Analysis of Drought-Resistant and Drought-Sensitive Sorghum (
    Abdel-Ghany SE; Ullah F; Ben-Hur A; Reddy ASN
    Int J Mol Sci; 2020 Jan; 21(3):. PubMed ID: 31991584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissecting the genetic control of natural variation in sorghum photosynthetic response to drought stress.
    Ortiz D; Salas-Fernandez MG
    J Exp Bot; 2022 May; 73(10):3251-3267. PubMed ID: 34791180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of ROS through proficient modulations of antioxidative defense system maintains the structural and functional integrity of photosynthetic apparatus and confers drought tolerance in the facultative halophyte Salvadora persica L.
    Rangani J; Panda A; Patel M; Parida AK
    J Photochem Photobiol B; 2018 Dec; 189():214-233. PubMed ID: 30396132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensitivity of the Photosynthetic Apparatus in Maize and Sorghum under Different Drought Levels.
    Stefanov M; Rashkov G; Borisova P; Apostolova E
    Plants (Basel); 2023 Apr; 12(9):. PubMed ID: 37176921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic architecture of photosynthesis in Sorghum bicolor under non-stress and cold stress conditions.
    Ortiz D; Hu J; Salas Fernandez MG
    J Exp Bot; 2017 Jul; 68(16):4545-4557. PubMed ID: 28981780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photosynthetic response of sweet sorghum to drought and re-watering at different growth stages.
    Zegada-Lizarazu W; Monti A
    Physiol Plant; 2013 Sep; 149(1):56-66. PubMed ID: 23198740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genotypic variation in whole-plant transpiration efficiency in sorghum only partly aligns with variation in stomatal conductance.
    Geetika G; van Oosterom EJ; George-Jaeggli B; Mortlock MY; Deifel KS; McLean G; Hammer GL
    Funct Plant Biol; 2019 Nov; 46(12):1072-1089. PubMed ID: 31615621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diffusion limitations and metabolic factors associated with inhibition and recovery of photosynthesis from drought stress in a C perennial grass species.
    Hu L; Wang Z; Huang B
    Physiol Plant; 2010 May; 139(1):93-106. PubMed ID: 20070869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Effects of drought and rewatering on leaf photosynthesis, chlorophyll fluorescence, and root architecture of citrus seedlings.].
    Wei QJ; Feng FF; Ma ZZ; Su ST; Ning SJ; Gu QQ
    Ying Yong Sheng Tai Xue Bao; 2018 Aug; 29(8):2485-2492. PubMed ID: 30182586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.