These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 15002904)

  • 1. Mathematical and statistical analysis of the Trypanosoma brucei slender to stumpy transition.
    Savill NJ; Seed JR
    Parasitology; 2004 Jan; 128(Pt 1):53-67. PubMed ID: 15002904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A revised arithmetic model of long slender to short stumpy transformation in the African trypanosomes.
    Seed JR; Black SJ
    J Parasitol; 1999 Oct; 85(5):850-4. PubMed ID: 10577719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A proposed density-dependent model of long slender to short stumpy transformation in the African trypanosomes.
    Seed JR; Black SJ
    J Parasitol; 1997 Aug; 83(4):656-62. PubMed ID: 9267408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell density triggers slender to stumpy differentiation of Trypanosoma brucei bloodstream forms in culture.
    Reuner B; Vassella E; Yutzy B; Boshart M
    Mol Biochem Parasitol; 1997 Dec; 90(1):269-80. PubMed ID: 9497048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Replication, differentiation, growth and the virulence of Trypanosoma brucei infections.
    Turner CM; Aslam N; Dye C
    Parasitology; 1995 Sep; 111 ( Pt 3)():289-300. PubMed ID: 7567097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of long slender (LS) to short stumpy (SS) transformation in the African trypanosomes.
    Seed JR; Sechelski JB
    J Protozool; 1989; 36(6):572-7. PubMed ID: 2600880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Limitation of Trypanosoma brucei parasitaemia results from density-dependent parasite differentiation and parasite killing by the host immune response.
    Tyler KM; Higgs PG; Matthews KR; Gull K
    Proc Biol Sci; 2001 Nov; 268(1482):2235-43. PubMed ID: 11674871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oligopeptide Signaling through TbGPR89 Drives Trypanosome Quorum Sensing.
    Rojas F; Silvester E; Young J; Milne R; Tettey M; Houston DR; Walkinshaw MD; Pérez-Pi I; Auer M; Denton H; Smith TK; Thompson J; Matthews KR
    Cell; 2019 Jan; 176(1-2):306-317.e16. PubMed ID: 30503212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Major Step towards Defining the Elusive Stumpy Inducing Factor in Trypanosoma brucei.
    Sollelis L; Marti M
    Trends Parasitol; 2019 Jan; 35(1):6-8. PubMed ID: 30554967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis by flow cytometry of DNA synthesis during the life cycle of African trypanosomes.
    Shapiro SZ; Naessens J; Liesegang B; Moloo SK; Magondu J
    Acta Trop; 1984 Dec; 41(4):313-23. PubMed ID: 6152113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of the regulatory elements controlling the transmission stage-specific gene expression of PAD1 in Trypanosoma brucei.
    MacGregor P; Matthews KR
    Nucleic Acids Res; 2012 Sep; 40(16):7705-17. PubMed ID: 22684509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trypanosoma brucei: in vitro slender-to-stumpy differentiation of culture-adapted, monomorphic bloodstream forms.
    Breidbach T; Ngazoa E; Steverding D
    Exp Parasitol; 2002 Aug; 101(4):223-30. PubMed ID: 12594963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cold shock and regulation of surface protein trafficking convey sensitization to inducers of stage differentiation in Trypanosoma brucei.
    Engstler M; Boshart M
    Genes Dev; 2004 Nov; 18(22):2798-811. PubMed ID: 15545633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the effects of immune killing mechanisms on Trypanosoma brucei parasites of slender and stumpy morphology.
    McLintock LM; Turner CM; Vickerman K
    Parasite Immunol; 1993 Aug; 15(8):475-80. PubMed ID: 8233562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphorylation of eIF2α on Threonine 169 is not required for Trypanosoma brucei cell cycle arrest during differentiation.
    Avila CC; Peacock L; Machado FC; Gibson W; Schenkman S; Carrington M; Castilho BA
    Mol Biochem Parasitol; 2016; 205(1-2):16-21. PubMed ID: 26996431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide dissection of the quorum sensing signalling pathway in Trypanosoma brucei.
    Mony BM; MacGregor P; Ivens A; Rojas F; Cowton A; Young J; Horn D; Matthews K
    Nature; 2014 Jan; 505(7485):681-685. PubMed ID: 24336212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Basement membrane proteins as a substrate for efficient Trypanosoma brucei differentiation in vitro.
    Rojas F; Cayla M; Matthews KR
    PLoS Negl Trop Dis; 2021 Apr; 15(4):e0009284. PubMed ID: 33909626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The bloodstream differentiation-division of Trypanosoma brucei studied using mitochondrial markers.
    Tyler KM; Matthews KR; Gull K
    Proc Biol Sci; 1997 Oct; 264(1387):1481-90. PubMed ID: 9364788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differentiation of African trypanosomes is controlled by a density sensing mechanism which signals cell cycle arrest via the cAMP pathway.
    Vassella E; Reuner B; Yutzy B; Boshart M
    J Cell Sci; 1997 Nov; 110 ( Pt 21)():2661-71. PubMed ID: 9427384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein tyrosine phosphatase TbPTP1: A molecular switch controlling life cycle differentiation in trypanosomes.
    Szöor B; Wilson J; McElhinney H; Tabernero L; Matthews KR
    J Cell Biol; 2006 Oct; 175(2):293-303. PubMed ID: 17043136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.