These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
85 related articles for article (PubMed ID: 15002904)
21. A Mitogen-activated protein kinase controls differentiation of bloodstream forms of Trypanosoma brucei. Domenicali Pfister D; Burkard G; Morand S; Renggli CK; Roditi I; Vassella E Eukaryot Cell; 2006 Jul; 5(7):1126-35. PubMed ID: 16835456 [TBL] [Abstract][Full Text] [Related]
22. Depolymerization of SUMO chains induces slender to stumpy differentiation in T. brucei bloodstream parasites. Iribarren PA; Di Marzio LA; Berazategui MA; Saura A; Coria L; Cassataro J; Rojas F; Navarro M; Alvarez VE PLoS Pathog; 2024 Apr; 20(4):e1012166. PubMed ID: 38635823 [TBL] [Abstract][Full Text] [Related]
23. RNA-Seq analysis validates the use of culture-derived Trypanosoma brucei and provides new markers for mammalian and insect life-cycle stages. Naguleswaran A; Doiron N; Roditi I BMC Genomics; 2018 Apr; 19(1):227. PubMed ID: 29606092 [TBL] [Abstract][Full Text] [Related]
24. Slender and stumpy bloodstream forms of Trypanosoma brucei display a differential response to extracellular acidic and proteolytic stress. Nolan DP; Rolin S; Rodriguez JR; Van Den Abbeele J; Pays E Eur J Biochem; 2000 Jan; 267(1):18-27. PubMed ID: 10601846 [TBL] [Abstract][Full Text] [Related]
25. Deletion of a novel protein kinase with PX and FYVE-related domains increases the rate of differentiation of Trypanosoma brucei. Vassella E; Krämer R; Turner CM; Wankell M; Modes C; van den Bogaard M; Boshart M Mol Microbiol; 2001 Jul; 41(1):33-46. PubMed ID: 11454198 [TBL] [Abstract][Full Text] [Related]
26. Differential mitochondrial gene expression between slender and stumpy bloodforms of Trypanosoma brucei. Feagin JE; Jasmer DP; Stuart K Mol Biochem Parasitol; 1986 Sep; 20(3):207-14. PubMed ID: 2429179 [TBL] [Abstract][Full Text] [Related]
27. Hydrolysis products of cAMP analogs cause transformation of Trypanosoma brucei from slender to stumpy-like forms. Laxman S; Riechers A; Sadilek M; Schwede F; Beavo JA Proc Natl Acad Sci U S A; 2006 Dec; 103(50):19194-9. PubMed ID: 17142316 [TBL] [Abstract][Full Text] [Related]
28. A gene expression comparison of Trypanosoma brucei and Trypanosoma congolense in the bloodstream of the mammalian host reveals species-specific adaptations to density-dependent development. Silvester E; Ivens A; Matthews KR PLoS Negl Trop Dis; 2018 Oct; 12(10):e0006863. PubMed ID: 30307943 [TBL] [Abstract][Full Text] [Related]
29. Monitoring the pleomorphism of Trypanosoma brucei gambiense isolates in mouse: impact on its transmissibility to Glossina palpalis gambiensis. Janelle J; Koffi M; Jamonneau V; Patrel D; Cuny G; Ravel S Infect Genet Evol; 2009 Dec; 9(6):1260-4. PubMed ID: 19720159 [TBL] [Abstract][Full Text] [Related]
30. Single-cell transcriptomic analysis of bloodstream Trypanosoma brucei reconstructs cell cycle progression and developmental quorum sensing. Briggs EM; Rojas F; McCulloch R; Matthews KR; Otto TD Nat Commun; 2021 Sep; 12(1):5268. PubMed ID: 34489460 [TBL] [Abstract][Full Text] [Related]
32. Trypanosoma b. brucei: a culture medium reverting a monomorphic to a pleomorphic strain. Otigbuo IN; Woo PT Trans R Soc Trop Med Hyg; 1987; 81(3):408-10. PubMed ID: 3686636 [TBL] [Abstract][Full Text] [Related]
33. Down regulation of S-adenosyl-L-methionine decarboxylase activity of Trypanosoma brucei during transition from long slender to short stumpy-like forms in axenic culture. Selzer PM; Hesse F; Hamm-Kunzelmann B; Muhlstadt K; Echner H; Duszenko M Eur J Cell Biol; 1996 Feb; 69(2):173-9. PubMed ID: 8907618 [TBL] [Abstract][Full Text] [Related]
34. Indomethacin promotes differentiation of Trypanosoma brucei. Jack RM; Black SJ; Reed SL; Davis CE Infect Immun; 1984 Jan; 43(1):445-8. PubMed ID: 6690416 [TBL] [Abstract][Full Text] [Related]
35. A quorum sensing-independent path to stumpy development in Trypanosoma brucei. Zimmermann H; Subota I; Batram C; Kramer S; Janzen CJ; Jones NG; Engstler M PLoS Pathog; 2017 Apr; 13(4):e1006324. PubMed ID: 28394929 [TBL] [Abstract][Full Text] [Related]
36. The AMPKα1 Pathway Positively Regulates the Developmental Transition from Proliferation to Quiescence in Trypanosoma brucei. Saldivia M; Ceballos-Pérez G; Bart JM; Navarro M Cell Rep; 2016 Oct; 17(3):660-670. PubMed ID: 27732844 [TBL] [Abstract][Full Text] [Related]
37. The Cytological Events and Molecular Control of Life Cycle Development of Trypanosoma brucei in the Mammalian Bloodstream. Silvester E; McWilliam KR; Matthews KR Pathogens; 2017 Jun; 6(3):. PubMed ID: 28657594 [TBL] [Abstract][Full Text] [Related]
38. Host-parasite interactions which influence the virulence of Trypanosoma (Trypanozoon) brucei brucei organisms. Black SJ; Jack RM; Morrison WI Acta Trop; 1983 Mar; 40(1):11-8. PubMed ID: 6134448 [TBL] [Abstract][Full Text] [Related]
39. Turnover of glycosomes during life-cycle differentiation of Trypanosoma brucei. Herman M; Pérez-Morga D; Schtickzelle N; Michels PA Autophagy; 2008 Apr; 4(3):294-308. PubMed ID: 18365344 [TBL] [Abstract][Full Text] [Related]