These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 15003017)
1. Synthesis, solid-state structure, and surface properties of end-capped poly(L-lactide). Kobori Y; Iwata T; Doi Y; Abe H Biomacromolecules; 2004; 5(2):530-6. PubMed ID: 15003017 [TBL] [Abstract][Full Text] [Related]
2. Structural effects of terminal groups on nonenzymatic and enzymatic degradations of end-capped poly(L-lactide). Kurokawa K; Yamashita K; Doi Y; Abe H Biomacromolecules; 2008 Mar; 9(3):1071-8. PubMed ID: 18275150 [TBL] [Abstract][Full Text] [Related]
3. Thermal degradation processes of end-capped poly(L-lactide)s in the presence and absence of residual zinc catalyst. Abe H; Takahashi N; Kim KJ; Mochizuki M; Doi Y Biomacromolecules; 2004; 5(4):1606-14. PubMed ID: 15244485 [TBL] [Abstract][Full Text] [Related]
4. Effect of polymer composition on rheological and degradation properties of temperature-responsive gelling systems composed of acyl-capped PCLA-PEG-PCLA. Petit A; Müller B; Meijboom R; Bruin P; van de Manakker F; Versluijs-Helder M; de Leede LG; Doornbos A; Landin M; Hennink WE; Vermonden T Biomacromolecules; 2013 Sep; 14(9):3172-82. PubMed ID: 23875877 [TBL] [Abstract][Full Text] [Related]
5. Structure, morphology and cell affinity of poly(L-lactide) films surface-functionalized with chitosan nanofibers via a solid-liquid phase separation technique. Zhao J; Han W; Tang M; Tu M; Zeng R; Liang Z; Zhou C Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1546-53. PubMed ID: 23827607 [TBL] [Abstract][Full Text] [Related]
6. L-Phe end-capped poly(L-lactide) as macroinitiator for the synthesis of poly(L-lactide)-B-poly(L-lysine) block copolymer. Fan Y; Chen G; Tanaka J; Tateishi T Biomacromolecules; 2005; 6(6):3051-6. PubMed ID: 16283726 [TBL] [Abstract][Full Text] [Related]
7. Novel preparation method for poly(L-lactide)-based block copolymers: extended chain crystallites as a solid-state macro-coinitiator. Tsuji H; Nishikawa M; Sakamoto Y; Itsuno S Biomacromolecules; 2007 May; 8(5):1730-8. PubMed ID: 17432901 [TBL] [Abstract][Full Text] [Related]
8. Synthesis, structure and properties of poly(L-lactide-co-ε-caprolactone) statistical copolymers. Fernández J; Etxeberria A; Sarasua JR J Mech Behav Biomed Mater; 2012 May; 9():100-12. PubMed ID: 22498288 [TBL] [Abstract][Full Text] [Related]
9. Syntheses and physical characterization of new aliphatic triblock poly(L-lactide-b-butylene succinate-b-L-lactide)s bearing soft and hard biodegradable building blocks. Ba C; Yang J; Hao Q; Liu X; Cao A Biomacromolecules; 2003; 4(6):1827-34. PubMed ID: 14606915 [TBL] [Abstract][Full Text] [Related]
10. Biodegradable films of partly branched poly(l-lactide)-co-poly(epsilon-caprolactone) copolymer: modulation of phase morphology, plasticization properties and thermal depolymerization. Broström J; Boss A; Chronakis IS Biomacromolecules; 2004; 5(3):1124-34. PubMed ID: 15132708 [TBL] [Abstract][Full Text] [Related]
11. Study of the chain microstructure effects on the resulting thermal properties of poly(L-lactide)/poly(N-isopropylacrylamide) biomedical materials. Lizundia E; Meaurio E; Laza JM; Vilas JL; León Isidro LM Mater Sci Eng C Mater Biol Appl; 2015 May; 50():97-106. PubMed ID: 25746250 [TBL] [Abstract][Full Text] [Related]
12. Crystallization-driven surface segregation and surface structures in poly(L-lactide)-block-poly(ethylene glycol) copolymer thick films. Yang J; Liang Y; Han CC Langmuir; 2014 Jan; 30(1):394-401. PubMed ID: 24328957 [TBL] [Abstract][Full Text] [Related]
13. Amphiphilic poly(D- or L-lactide)-b-poly(N,N-dimethylamino-2-ethyl methacrylate) block copolymers: controlled synthesis, characterization, and stereocomplex formation. Spasova M; Mespouille L; Coulembier O; Paneva D; Manolova N; Rashkov I; Dubois P Biomacromolecules; 2009 May; 10(5):1217-23. PubMed ID: 19331403 [TBL] [Abstract][Full Text] [Related]
14. Novel Poly(l-lactide)/graphene oxide films with improved mechanical flexibility and antibacterial activity. Yang Z; Sun C; Wang L; Chen H; He J; Chen Y J Colloid Interface Sci; 2017 Dec; 507():344-352. PubMed ID: 28803028 [TBL] [Abstract][Full Text] [Related]
15. In vitro cell response to differences in poly-L-lactide crystallinity. Park A; Cima LG J Biomed Mater Res; 1996 May; 31(1):117-30. PubMed ID: 8731156 [TBL] [Abstract][Full Text] [Related]
16. Processing, annealing and sterilisation of poly-L-lactide. Weir NA; Buchanan FJ; Orr JF; Farrar DF; Boyd A Biomaterials; 2004 Aug; 25(18):3939-49. PubMed ID: 15046884 [TBL] [Abstract][Full Text] [Related]
17. Physical properties, crystallization, and spherulite growth of linear and 3-arm poly(L-lactide)s. Tsuji H; Miyase T; Tezuka Y; Saha SK Biomacromolecules; 2005; 6(1):244-54. PubMed ID: 15638527 [TBL] [Abstract][Full Text] [Related]
18. Branched poly(lactide) synthesized by enzymatic polymerization: effects of molecular branches and stereochemistry on enzymatic degradation and alkaline hydrolysis. Numata K; Srivastava RK; Finne-Wistrand A; Albertsson AC; Doi Y; Abe H Biomacromolecules; 2007 Oct; 8(10):3115-25. PubMed ID: 17722879 [TBL] [Abstract][Full Text] [Related]
19. Effect of stereo-complexation on crystallization behavior and barrier properties of poly-lactide. Li W; Cao J; Fu L; Liu F; Huang Y; He Y; Jiang L; Dan Y Int J Biol Macromol; 2024 Mar; 261(Pt 2):129834. PubMed ID: 38302029 [TBL] [Abstract][Full Text] [Related]
20. In vitro hydrolysis of poly(L-lactide) crystalline residues as extended-chain crystallites. Part I: long-term hydrolysis in phosphate-buffered solution at 37 degrees C. Tsuji H; Ikarashi K Biomaterials; 2004 Nov; 25(24):5449-55. PubMed ID: 15142725 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]