These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 15003049)

  • 1. An adaptive way for improving noise reduction using local geometric projection.
    Leontitsis A; Bountis T; Pagge J
    Chaos; 2004 Mar; 14(1):106-10. PubMed ID: 15003049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Model-based detector and extraction of weak signal frequencies from chaotic data.
    Zhou C; Cai T; Heng Lai C; Wang X; Lai YC
    Chaos; 2008 Mar; 18(1):013104. PubMed ID: 18377055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A method of estimating the noise level in a chaotic time series.
    Jayawardena AW; Xu P; Li WK
    Chaos; 2008 Jun; 18(2):023115. PubMed ID: 18601482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiplexing of discrete chaotic signals in presence of noise.
    Nagaraj N; Vaidya PG
    Chaos; 2009 Sep; 19(3):033102. PubMed ID: 19791982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling global vector fields of chaotic systems from noisy time series with the aid of structure-selection techniques.
    Xu D; Lu F
    Chaos; 2006 Dec; 16(4):043109. PubMed ID: 17199387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robust time delay estimation of bioelectric signals using least absolute deviation neural network.
    Wang Z; He Z; Chen JD
    IEEE Trans Biomed Eng; 2005 Mar; 52(3):454-62. PubMed ID: 15759575
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of noise on the neutral direction of chaotic attractor.
    Lai YC; Liu Z
    Chaos; 2004 Mar; 14(1):189-92. PubMed ID: 15003060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of common noise on phase synchronization in coupled chaotic oscillators.
    Park K; Lai YC; Krishnamoorthy S; Kandangath A
    Chaos; 2007 Mar; 17(1):013105. PubMed ID: 17411241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robust weighted averaging.
    Leski JM
    IEEE Trans Biomed Eng; 2002 Aug; 49(8):796-804. PubMed ID: 12148818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase space correlation to improve detection accuracy.
    Carroll TL; Rachford FJ
    Chaos; 2009 Sep; 19(3):033101. PubMed ID: 19791981
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On utilizing search methods to select subspace dimensions for kernel-based nonlinear subspace classifiers.
    Kim SW; Oommen BJ
    IEEE Trans Pattern Anal Mach Intell; 2005 Jan; 27(1):136-41. PubMed ID: 15628275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new criterion to distinguish stochastic and deterministic time series with the Poincaré section and fractal dimension.
    Golestani A; Jahed Motlagh MR; Ahmadian K; Omidvarnia AH; Mozayani N
    Chaos; 2009 Mar; 19(1):013137. PubMed ID: 19335001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of self-adjusting systems with noise.
    Melby P; Weber N; Hübler A
    Chaos; 2005 Sep; 15(3):33902. PubMed ID: 16252993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On parameter estimation of chaotic systems via symbolic time-series analysis.
    Piccardi C
    Chaos; 2006 Dec; 16(4):043115. PubMed ID: 17199393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal instruments and models for noisy chaos.
    Strelioff CC; Crutchfield JP
    Chaos; 2007 Dec; 17(4):043127. PubMed ID: 18163791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identifying parameter by identical synchronization between different systems.
    Huang D; Guo R
    Chaos; 2004 Mar; 14(1):152-9. PubMed ID: 15003056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Geometric mean for subspace selection.
    Tao D; Li X; Wu X; Maybank SJ
    IEEE Trans Pattern Anal Mach Intell; 2009 Feb; 31(2):260-74. PubMed ID: 19110492
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonlinear real-life signal detection with a supervised principal components analysis.
    Zhou CT; Cai TX; Cai TF
    Chaos; 2007 Mar; 17(1):013108. PubMed ID: 17411244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Statistics of Poincaré recurrences for maps with integrable and ergodic components.
    Hu H; Rampioni A; Rossi L; Turchetti G; Vaienti S
    Chaos; 2004 Mar; 14(1):160-71. PubMed ID: 15003057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical and experimental studies of parameter estimation based on chaos feedback synchronization.
    Zhang Y; Tao C; Jiang JJ
    Chaos; 2006 Dec; 16(4):043122. PubMed ID: 17199400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.