BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 15003563)

  • 1. Tracking variations in nicotinamide cofactors extracted from cultured cells using capillary electrophoresis with multiphoton excitation of fluorescence.
    Wise DD; Shear JB
    Anal Biochem; 2004 Mar; 326(2):225-33. PubMed ID: 15003563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Circadian tracking of nicotinamide cofactor levels in an immortalized suprachiasmatic nucleus cell line.
    Wise DD; Shear JB
    Neuroscience; 2004; 128(2):263-8. PubMed ID: 15350639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Separation of flavins and nicotinamide cofactors in Chinese hamster ovary cells by capillary electrophoresis.
    Li Y; de Silva PG; Xi L; van Winkle A; Lin JJ; Ahmed S; Geng ML
    Biomed Chromatogr; 2008 Dec; 22(12):1374-84. PubMed ID: 18814195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitation of nicotinamide and serotonin derivatives and detection of flavins in neuronal extracts using capillary electrophoresis with multiphoton-excited fluorescence.
    Wise DD; Shear JB
    J Chromatogr A; 2006 Apr; 1111(2):153-8. PubMed ID: 16569574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of NAD(+) and NADH in a single cell under hydrogen peroxide stress by capillary electrophoresis.
    Xie W; Xu A; Yeung ES
    Anal Chem; 2009 Feb; 81(3):1280-4. PubMed ID: 19178345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noniterative biexponential fluorescence lifetime imaging in the investigation of cellular metabolism by means of NAD(P)H autofluorescence.
    Niesner R; Peker B; Schlüsche P; Gericke KH
    Chemphyschem; 2004 Aug; 5(8):1141-9. PubMed ID: 15446736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extraction and Quantitation of Nicotinamide Adenine Dinucleotide Redox Cofactors.
    Lu W; Wang L; Chen L; Hui S; Rabinowitz JD
    Antioxid Redox Signal; 2018 Jan; 28(3):167-179. PubMed ID: 28497978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photobleaching of reduced nicotinamide adenine dinucleotide and the development of highly fluorescent lesions in rat basophilic leukemia cells during multiphoton microscopy.
    Tiede LM; Nichols MG
    Photochem Photobiol; 2006; 82(3):656-64. PubMed ID: 16426080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A method for determination of pyridine nucleotides using a single extract.
    Zhang Z; Yu J; Stanton RC
    Anal Biochem; 2000 Oct; 285(1):163-7. PubMed ID: 10998277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The biosynthesis and turnover of nicotinamide adenine dinucleotide in enucleated culture cells.
    Rechsteiner M; Catanzarite V
    J Cell Physiol; 1974 Dec; 84(3):409-22. PubMed ID: 4154946
    [No Abstract]   [Full Text] [Related]  

  • 11. [Determination of N'methylnicotinamide and nicotine coenzymes in biological in biological media by the fluorescent method].
    Kodentsova VM; Vrzhesinskaia OA; Sokol'nikov AA; Zaburkina TG; Bender ED; Spirichev VB
    Vopr Pitan; 1992; (2):62-7. PubMed ID: 1387493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduction in DNA synthesis during two-photon microscopy of intrinsic reduced nicotinamide adenine dinucleotide fluorescence.
    Nichols MG; Barth EE; Nichols JA
    Photochem Photobiol; 2005; 81(2):259-69. PubMed ID: 15647000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reactivation of NAD(H) biosynthetic pathway by exogenous NAD+ in Nil cells severely depleted of NAD(H).
    Mandel KG; Lively MK; Lombardi D; Amos H
    J Cell Physiol; 1983 Feb; 114(2):235-44. PubMed ID: 6218178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultraviolet-induced autofluorescence characterization of normal and tumoral esophageal epithelium cells with quantitation of NAD(P)H.
    Villette S; Pigaglio-Deshayes S; Vever-Bizet C; Validire P; Bourg-Heckly G
    Photochem Photobiol Sci; 2006 May; 5(5):483-92. PubMed ID: 16685326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A plate reader method for the measurement of NAD, NADP, glutathione, and ascorbate in tissue extracts: Application to redox profiling during Arabidopsis rosette development.
    Queval G; Noctor G
    Anal Biochem; 2007 Apr; 363(1):58-69. PubMed ID: 17288982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiphoton FLIM imaging of NAD(P)H and FAD with one excitation wavelength.
    Cao R; Wallrabe H; Periasamy A
    J Biomed Opt; 2020 Jan; 25(1):1-16. PubMed ID: 31920048
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzyme activities leading to NAD synthesis in human lymphocytes.
    Sestini S; Jacomelli G; Pescaglini M; Micheli V; Pompucci G
    Arch Biochem Biophys; 2000 Jul; 379(2):277-82. PubMed ID: 10898945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-performance liquid chromatography analysis of oxidized and reduced pyridine dinucleotides in specific brain regions.
    Klaidman LK; Leung AC; Adams JD
    Anal Biochem; 1995 Jul; 228(2):312-7. PubMed ID: 8572312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanistic investigation of a highly active phosphite dehydrogenase mutant and its application for NADPH regeneration.
    Woodyer R; Zhao H; van der Donk WA
    FEBS J; 2005 Aug; 272(15):3816-27. PubMed ID: 16045753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of oxidized and reduced nicotinamide adenine dinucleotide in cell monolayers using a single extraction procedure and a spectrophotometric assay.
    Umemura K; Kimura H
    Anal Biochem; 2005 Mar; 338(1):131-5. PubMed ID: 15707943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.