BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 15003601)

  • 1. Identifying specific kinase substrates through engineered kinases and ATP analogs.
    Kumar NV; Eblen ST; Weber MJ
    Methods; 2004 Apr; 32(4):389-97. PubMed ID: 15003601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of novel ERK2 substrates through use of an engineered kinase and ATP analogs.
    Eblen ST; Kumar NV; Shah K; Henderson MJ; Watts CK; Shokat KM; Weber MJ
    J Biol Chem; 2003 Apr; 278(17):14926-35. PubMed ID: 12594221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biochemical and biological functions of the N-terminal, noncatalytic domain of extracellular signal-regulated kinase 2.
    Eblen ST; Catling AD; Assanah MC; Weber MJ
    Mol Cell Biol; 2001 Jan; 21(1):249-59. PubMed ID: 11113199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of novel substrates of MAP Kinase cascades using bioengineered kinases that uniquely utilize analogs of ATP to phosphorylate substrates.
    Zheng H; Al-Ayoubi A; Eblen ST
    Methods Mol Biol; 2010; 661():167-83. PubMed ID: 20811983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of novel extracellular signal-regulated kinase docking domain inhibitors.
    Hancock CN; Macias A; Lee EK; Yu SY; Mackerell AD; Shapiro P
    J Med Chem; 2005 Jul; 48(14):4586-95. PubMed ID: 15999996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Docking sites on mitogen-activated protein kinase (MAPK) kinases, MAPK phosphatases and the Elk-1 transcription factor compete for MAPK binding and are crucial for enzymic activity.
    Bardwell AJ; Abdollahi M; Bardwell L
    Biochem J; 2003 Mar; 370(Pt 3):1077-85. PubMed ID: 12529172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The kinase suppressor of Ras (KSR) modulates growth factor and Ras signaling by uncoupling Elk-1 phosphorylation from MAP kinase activation.
    Sugimoto T; Stewart S; Han M; Guan KL
    EMBO J; 1998 Mar; 17(6):1717-27. PubMed ID: 9501093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A bipartite mechanism for ERK2 recognition by its cognate regulators and substrates.
    Zhang J; Zhou B; Zheng CF; Zhang ZY
    J Biol Chem; 2003 Aug; 278(32):29901-12. PubMed ID: 12754209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering Src family protein kinases with unnatural nucleotide specificity.
    Liu Y; Shah K; Yang F; Witucki L; Shokat KM
    Chem Biol; 1998 Feb; 5(2):91-101. PubMed ID: 9495830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering a "methionine clamp" into Src family kinases enhances specificity toward unnatural ATP analogues.
    Ulrich SM; Kenski DM; Shokat KM
    Biochemistry; 2003 Jul; 42(26):7915-21. PubMed ID: 12834343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatially separate docking sites on ERK2 regulate distinct signaling events in vivo.
    Dimitri CA; Dowdle W; MacKeigan JP; Blenis J; Murphy LO
    Curr Biol; 2005 Jul; 15(14):1319-24. PubMed ID: 16051177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large-scale discovery of ERK2 substrates identifies ERK-mediated transcriptional regulation by ETV3.
    Carlson SM; Chouinard CR; Labadorf A; Lam CJ; Schmelzle K; Fraenkel E; White FM
    Sci Signal; 2011 Oct; 4(196):rs11. PubMed ID: 22028470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutation of position 52 in ERK2 creates a nonproductive binding mode for adenosine 5'-triphosphate.
    Robinson MJ; Harkins PC; Zhang J; Baer R; Haycock JW; Cobb MH; Goldsmith EJ
    Biochemistry; 1996 May; 35(18):5641-6. PubMed ID: 8639522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The activity of the extracellular signal-regulated kinase 2 is regulated by differential phosphorylation in the activation loop.
    Zhou B; Zhang ZY
    J Biol Chem; 2002 Apr; 277(16):13889-99. PubMed ID: 11839761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering the serine/threonine protein kinase Raf-1 to utilise an orthogonal analogue of ATP substituted at the N6 position.
    Hindley AD; Park S; Wang L; Shah K; Wang Y; Hu X; Shokat KM; Kolch W; Sedivy JM; Yeung KC
    FEBS Lett; 2004 Jan; 556(1-3):26-34. PubMed ID: 14706820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative analysis of ERK2 interactions with substrate proteins: roles for kinase docking domains and activity in determining binding affinity.
    Burkhard KA; Chen F; Shapiro P
    J Biol Chem; 2011 Jan; 286(4):2477-85. PubMed ID: 21098038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recruitment of the extracellular signal-regulated kinase/ribosomal S6 kinase signaling pathway to the NFATc4 transcription activation complex.
    Yang TT; Xiong Q; Graef IA; Crabtree GR; Chow CW
    Mol Cell Biol; 2005 Feb; 25(3):907-20. PubMed ID: 15657420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A kinetic approach towards understanding substrate interactions and the catalytic mechanism of the serine/threonine protein kinase ERK2: identifying a potential regulatory role for divalent magnesium.
    Waas WF; Rainey MA; Szafranska AE; Cox K; Dalby KN
    Biochim Biophys Acta; 2004 Mar; 1697(1-2):81-7. PubMed ID: 15023352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extracellular signal-regulated kinase 2 (ERK2) phosphorylation sites and docking domain on the nuclear pore complex protein Tpr cooperatively regulate ERK2-Tpr interaction.
    Vomastek T; Iwanicki MP; Burack WR; Tiwari D; Kumar D; Parsons JT; Weber MJ; Nandicoori VK
    Mol Cell Biol; 2008 Nov; 28(22):6954-66. PubMed ID: 18794356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fibroblast growth factor receptor signaling activates the human interstitial collagenase promoter via the bipartite Ets-AP1 element.
    Newberry EP; Willis D; Latifi T; Boudreaux JM; Towler DA
    Mol Endocrinol; 1997 Jul; 11(8):1129-44. PubMed ID: 9212060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.