These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 15003798)

  • 1. The osteoporotic vertebral structure is well adapted to the loads of daily life, but not to infrequent "error" loads.
    Homminga J; Van-Rietbergen B; Lochmüller EM; Weinans H; Eckstein F; Huiskes R
    Bone; 2004 Mar; 34(3):510-6. PubMed ID: 15003798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trabecular bone tissue strains in the healthy and osteoporotic human femur.
    Van Rietbergen B; Huiskes R; Eckstein F; Rüegsegger P
    J Bone Miner Res; 2003 Oct; 18(10):1781-8. PubMed ID: 14584888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Damage accumulation in vertebral trabecular bone depends on loading mode and direction.
    Wolfram U; Wilke HJ; Zysset PK
    J Biomech; 2011 Apr; 44(6):1164-9. PubMed ID: 21295781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vertebral osteoporosis and trabecular bone quality.
    McDonnell P; McHugh PE; O'Mahoney D
    Ann Biomed Eng; 2007 Feb; 35(2):170-89. PubMed ID: 17171508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of the failure behaviour of vertebral trabecular architectures under uni-axial compression and wedge action loading conditions.
    McDonnell P; Harrison N; McHugh PE
    Med Eng Phys; 2010 Jul; 32(6):569-76. PubMed ID: 20233666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical evaluation by patient-specific finite element analyses demonstrates therapeutic effects for osteoporotic vertebrae.
    Tawara D; Sakamoto J; Murakami H; Kawahara N; Oda J; Tomita K
    J Mech Behav Biomed Mater; 2010 Jan; 3(1):31-40. PubMed ID: 19878900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a multi-scale finite element model of the osteoporotic lumbar vertebral body for the investigation of apparent level vertebra mechanics and micro-level trabecular mechanics.
    McDonald K; Little J; Pearcy M; Adam C
    Med Eng Phys; 2010 Jul; 32(6):653-61. PubMed ID: 20439162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Load distribution in the healthy and osteoporotic human proximal femur during a fall to the side.
    Verhulp E; van Rietbergen B; Huiskes R
    Bone; 2008 Jan; 42(1):30-5. PubMed ID: 17977813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of bone mineral density after percutaneous kyphoplasty in fresh osteoporotic vertebral body fractures and adjacent vertebrae along with sagittal spine alignment.
    Korovessis P; Zacharatos S; Repantis T; Michael A; Karachalios D
    J Spinal Disord Tech; 2008 Jun; 21(4):293-8. PubMed ID: 18525491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preliminary biomechanical evaluation of prophylactic vertebral reinforcement adjacent to vertebroplasty under cyclic loading.
    Oakland RJ; Furtado NR; Wilcox RK; Timothy J; Hall RM
    Spine J; 2009 Feb; 9(2):174-81. PubMed ID: 18640876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhomogeneity of tissue-level strain distributions in individual trabeculae: mathematical model studies of normal and osteoporosis cases.
    Gefen A; Portnoy S; Diamant I
    Med Eng Phys; 2008 Jun; 30(5):624-30. PubMed ID: 17697794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Primary pedicle screw augmentation in osteoporotic lumbar vertebrae: biomechanical analysis of pedicle fixation strength.
    Burval DJ; McLain RF; Milks R; Inceoglu S
    Spine (Phila Pa 1976); 2007 May; 32(10):1077-83. PubMed ID: 17471088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulated influence of osteoporosis and disc degeneration on the load transfer in a lumbar functional spinal unit.
    Polikeit A; Nolte LP; Ferguson SJ
    J Biomech; 2004 Jul; 37(7):1061-9. PubMed ID: 15165876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trabecular rod buckling index in thoraco-lumbar vertebral bonedagger.
    Sutton-Smith P; Parkinson IH; Linn AM; Kooke SA; Fazzalari NL
    Clin Anat; 2006 Jan; 19(1):12-8. PubMed ID: 16092135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of fatigue failure responses of old versus middle-aged lumbar motion segments in simulated flexed lifting.
    Gallagher S; Marras WS; Litsky AS; Burr D; Landoll J; Matkovic V
    Spine (Phila Pa 1976); 2007 Aug; 32(17):1832-9. PubMed ID: 17762290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo BMP-7 (OP-1) enhancement of osteoporotic vertebral bodies in an ovine model.
    Phillips FM; Turner AS; Seim HB; MacLeay J; Toth CA; Pierce AR; Wheeler DL
    Spine J; 2006; 6(5):500-6. PubMed ID: 16934718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Loads on a telemeterized vertebral body replacement measured in three patients within the first postoperative month.
    Rohlmann A; Graichen F; Bender A; Kayser R; Bergmann G
    Clin Biomech (Bristol, Avon); 2008 Feb; 23(2):147-58. PubMed ID: 17983694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adjacent level load transfer following vertebral augmentation in the cadaveric spine.
    Kayanja MM; Evans K; Milks R; Lieberman IH
    Spine (Phila Pa 1976); 2006 Oct; 31(21):E790-7. PubMed ID: 17023840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tissue-level failure accumulation in vertebral cancellous bone: a theoretical model.
    Slomka N; Diamant I; Gefen A
    Technol Health Care; 2008; 16(1):47-60. PubMed ID: 18334787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of trabecular morphology in the etiology of age-related vertebral fractures.
    Snyder BD; Piazza S; Edwards WT; Hayes WC
    Calcif Tissue Int; 1993; 53 Suppl 1():S14-22. PubMed ID: 8275369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.