These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 15004005)

  • 1. Role of the processing pore of the ClpX AAA+ ATPase in the recognition and engagement of specific protein substrates.
    Siddiqui SM; Sauer RT; Baker TA
    Genes Dev; 2004 Feb; 18(4):369-74. PubMed ID: 15004005
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional domains of the ClpA and ClpX molecular chaperones identified by limited proteolysis and deletion analysis.
    Singh SK; Rozycki J; Ortega J; Ishikawa T; Lo J; Steven AC; Maurizi MR
    J Biol Chem; 2001 Aug; 276(31):29420-9. PubMed ID: 11346657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Altered specificity of a AAA+ protease.
    Farrell CM; Baker TA; Sauer RT
    Mol Cell; 2007 Jan; 25(1):161-6. PubMed ID: 17218279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Communication between ClpX and ClpP during substrate processing and degradation.
    Joshi SA; Hersch GL; Baker TA; Sauer RT
    Nat Struct Mol Biol; 2004 May; 11(5):404-11. PubMed ID: 15064753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Mycobacterium tuberculosis ClpP1P2 Protease Interacts Asymmetrically with Its ATPase Partners ClpX and ClpC1.
    Leodolter J; Warweg J; Weber-Ban E
    PLoS One; 2015; 10(5):e0125345. PubMed ID: 25933022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinct static and dynamic interactions control ATPase-peptidase communication in a AAA+ protease.
    Martin A; Baker TA; Sauer RT
    Mol Cell; 2007 Jul; 27(1):41-52. PubMed ID: 17612489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. clpX encoding an alternative ATP-binding subunit of protease Ti (Clp) can be expressed independently from clpP in Escherichia coli.
    Yoo SJ; Seol JH; Kang MS; Ha DB; Chung CH
    Biochem Biophys Res Commun; 1994 Sep; 203(2):798-804. PubMed ID: 8093059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deciphering the Roles of Multicomponent Recognition Signals by the AAA+ Unfoldase ClpX.
    Ling L; MontaƱo SP; Sauer RT; Rice PA; Baker TA
    J Mol Biol; 2015 Sep; 427(18):2966-82. PubMed ID: 25797169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Versatile modes of peptide recognition by the ClpX N domain mediate alternative adaptor-binding specificities in different bacterial species.
    Chowdhury T; Chien P; Ebrahim S; Sauer RT; Baker TA
    Protein Sci; 2010 Feb; 19(2):242-54. PubMed ID: 20014030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of substrate gating and translocation into ClpP by channel residues and ClpX binding.
    Lee ME; Baker TA; Sauer RT
    J Mol Biol; 2010 Jun; 399(5):707-18. PubMed ID: 20416323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular determinants of complex formation between Clp/Hsp100 ATPases and the ClpP peptidase.
    Kim YI; Levchenko I; Fraczkowska K; Woodruff RV; Sauer RT; Baker TA
    Nat Struct Biol; 2001 Mar; 8(3):230-3. PubMed ID: 11224567
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Specificity in substrate and cofactor recognition by the N-terminal domain of the chaperone ClpX.
    Thibault G; Yudin J; Wong P; Tsitrin V; Sprangers R; Zhao R; Houry WA
    Proc Natl Acad Sci U S A; 2006 Nov; 103(47):17724-9. PubMed ID: 17090685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The N-terminal zinc binding domain of ClpX is a dimerization domain that modulates the chaperone function.
    Wojtyra UA; Thibault G; Tuite A; Houry WA
    J Biol Chem; 2003 Dec; 278(49):48981-90. PubMed ID: 12937164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pore loops of the AAA+ ClpX machine grip substrates to drive translocation and unfolding.
    Martin A; Baker TA; Sauer RT
    Nat Struct Mol Biol; 2008 Nov; 15(11):1147-51. PubMed ID: 18931677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. C-terminal domain mutations in ClpX uncouple substrate binding from an engagement step required for unfolding.
    Joshi SA; Baker TA; Sauer RT
    Mol Microbiol; 2003 Apr; 48(1):67-76. PubMed ID: 12657045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ClpX/P-Dependent Degradation of Novel Substrates in Streptococcus mutans.
    Gurung V; Biswas I
    J Bacteriol; 2022 Apr; 204(4):e0059421. PubMed ID: 35343773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy-dependent degradation: Linkage between ClpX-catalyzed nucleotide hydrolysis and protein-substrate processing.
    Burton RE; Baker TA; Sauer RT
    Protein Sci; 2003 May; 12(5):893-902. PubMed ID: 12717012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large nucleotide-dependent movement of the N-terminal domain of the ClpX chaperone.
    Thibault G; Tsitrin Y; Davidson T; Gribun A; Houry WA
    EMBO J; 2006 Jul; 25(14):3367-76. PubMed ID: 16810315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overlapping recognition determinants within the ssrA degradation tag allow modulation of proteolysis.
    Flynn JM; Levchenko I; Seidel M; Wickner SH; Sauer RT; Baker TA
    Proc Natl Acad Sci U S A; 2001 Sep; 98(19):10584-9. PubMed ID: 11535833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diverse pore loops of the AAA+ ClpX machine mediate unassisted and adaptor-dependent recognition of ssrA-tagged substrates.
    Martin A; Baker TA; Sauer RT
    Mol Cell; 2008 Feb; 29(4):441-50. PubMed ID: 18313382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.