These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 15004231)

  • 1. Listeria monocytogenes actin-based motility varies depending on subcellular location: a kinematic probe for cytoarchitecture.
    Lacayo CI; Theriot JA
    Mol Biol Cell; 2004 May; 15(5):2164-75. PubMed ID: 15004231
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biophysical parameters influence actin-based movement, trajectory, and initiation in a cell-free system.
    Cameron LA; Robbins JR; Footer MJ; Theriot JA
    Mol Biol Cell; 2004 May; 15(5):2312-23. PubMed ID: 15004224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large-scale quantitative analysis of sources of variation in the actin polymerization-based movement of Listeria monocytogenes.
    Soo FS; Theriot JA
    Biophys J; 2005 Jul; 89(1):703-23. PubMed ID: 15879472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of intermediate filaments on actin-based motility of Listeria monocytogenes.
    Giardini PA; Theriot JA
    Biophys J; 2001 Dec; 81(6):3193-203. PubMed ID: 11720985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Listeria monocytogenes intracellular migration: inhibition by profilin, vitamin D-binding protein and DNase I.
    Sanger JM; Mittal B; Southwick FS; Sanger JW
    Cell Motil Cytoskeleton; 1995; 30(1):38-49. PubMed ID: 7728867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of actin and alpha-actinin in the tails of Listeria monocytogenes in infected PtK2 cells.
    Nanavati D; Ashton FT; Sanger JM; Sanger JW
    Cell Motil Cytoskeleton; 1994; 28(4):346-58. PubMed ID: 7954861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Listeria monocytogenes moves rapidly through the host-cell cytoplasm by inducing directional actin assembly.
    Dabiri GA; Sanger JM; Portnoy DA; Southwick FS
    Proc Natl Acad Sci U S A; 1990 Aug; 87(16):6068-72. PubMed ID: 2117270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The rate of actin-based motility of intracellular Listeria monocytogenes equals the rate of actin polymerization.
    Theriot JA; Mitchison TJ; Tilney LG; Portnoy DA
    Nature; 1992 May; 357(6375):257-60. PubMed ID: 1589024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The actin-based motility of the facultative intracellular pathogen Listeria monocytogenes.
    Cossart P; Kocks C
    Mol Microbiol; 1994 Aug; 13(3):395-402. PubMed ID: 7997157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracellular and cell-to-cell spread of Listeria monocytogenes involves interaction with F-actin in the enterocytelike cell line Caco-2.
    Mounier J; Ryter A; Coquis-Rondon M; Sansonetti PJ
    Infect Immun; 1990 Apr; 58(4):1048-58. PubMed ID: 2108086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Steps and fluctuations of Listeria monocytogenes during actin-based motility.
    Kuo SC; McGrath JL
    Nature; 2000 Oct; 407(6807):1026-9. PubMed ID: 11069185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Host cell actin assembly is necessary and likely to provide the propulsive force for intracellular movement of Listeria monocytogenes.
    Sanger JM; Sanger JW; Southwick FS
    Infect Immun; 1992 Sep; 60(9):3609-19. PubMed ID: 1500169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plant mitochondria move on F-actin, but their positioning in the cortical cytoplasm depends on both F-actin and microtubules.
    Van Gestel K; Köhler RH; Verbelen JP
    J Exp Bot; 2002 Apr; 53(369):659-67. PubMed ID: 11886885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights into cell division using Listeria monocytogenes infections of PtK2 renal epithelial cells.
    Sanger JM; Sanger JW
    Cytoskeleton (Hoboken); 2012 Nov; 69(11):992-9. PubMed ID: 23027717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of the elasticity of the actin tail of Listeria monocytogenes.
    Gerbal F; Laurent V; Ott A; Carlier MF; Chaikin P; Prost J
    Eur Biophys J; 2000; 29(2):134-40. PubMed ID: 10877022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The microtubule depolymerizing drugs nocodazole and colchicine inhibit the uptake of Listeria monocytogenes by P388D1 macrophages.
    Kuhn M
    FEMS Microbiol Lett; 1998 Mar; 160(1):87-90. PubMed ID: 9495017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disassembly of actin filaments leads to increased rate and frequency of mitochondrial movement along microtubules.
    Krendel M; Sgourdas G; Bonder EM
    Cell Motil Cytoskeleton; 1998; 40(4):368-78. PubMed ID: 9712266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Host-pathogen interactions during entry and actin-based movement of Listeria monocytogenes.
    Ireton K; Cossart P
    Annu Rev Genet; 1997; 31():113-38. PubMed ID: 9442892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A kinematic description of the trajectories of Listeria monocytogenes propelled by actin comet tails.
    Shenoy VB; Tambe DT; Prasad A; Theriot JA
    Proc Natl Acad Sci U S A; 2007 May; 104(20):8229-34. PubMed ID: 17485664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Actin polymerization is induced by Arp2/3 protein complex at the surface of Listeria monocytogenes.
    Welch MD; Iwamatsu A; Mitchison TJ
    Nature; 1997 Jan; 385(6613):265-9. PubMed ID: 9000076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.