BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 15004233)

  • 21. Disruption of keratin filaments in embryonic epithelial cell types.
    Trevor KT
    New Biol; 1990 Nov; 2(11):1004-14. PubMed ID: 1714295
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Focal adhesions are hotspots for keratin filament precursor formation.
    Windoffer R; Kölsch A; Wöll S; Leube RE
    J Cell Biol; 2006 May; 173(3):341-8. PubMed ID: 16682525
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Light-induced resistance of the keratin network to the filament-disrupting tyrosine phosphatase inhibitor orthovanadate.
    Strnad P; Windoffer R; Leube RE
    J Invest Dermatol; 2003 Feb; 120(2):198-203. PubMed ID: 12542522
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Simulating the formation of keratin filament networks by a piecewise-deterministic Markov process.
    Beil M; Lück S; Fleischer F; Portet S; Arendt W; Schmidt V
    J Theor Biol; 2009 Feb; 256(4):518-32. PubMed ID: 19014958
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Morphology, behavior, and interaction of cultured epithelial cells after the antibody-induced disruption of keratin filament organization.
    Klymkowsky MW; Miller RH; Lane EB
    J Cell Biol; 1983 Feb; 96(2):494-509. PubMed ID: 6187752
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The small heat shock protein Hsp27 affects assembly dynamics and structure of keratin intermediate filament networks.
    Kayser J; Haslbeck M; Dempfle L; Krause M; Grashoff C; Buchner J; Herrmann H; Bausch AR
    Biophys J; 2013 Oct; 105(8):1778-85. PubMed ID: 24138853
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A novel mechanism of keratin cytoskeleton organization through casein kinase Iα and FAM83H in colorectal cancer.
    Kuga T; Kume H; Kawasaki N; Sato M; Adachi J; Shiromizu T; Hoshino I; Nishimori T; Matsubara H; Tomonaga T
    J Cell Sci; 2013 Oct; 126(Pt 20):4721-31. PubMed ID: 23902688
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Architecture and dynamics of a desmosome-endoplasmic reticulum complex.
    Bharathan NK; Giang W; Hoffman CL; Aaron JS; Khuon S; Chew TL; Preibisch S; Trautman ET; Heinrich L; Bogovic J; Bennett D; Ackerman D; Park W; Petruncio A; Weigel AV; Saalfeld S; ; Wayne Vogl A; Stahley SN; Kowalczyk AP
    Nat Cell Biol; 2023 Jun; 25(6):823-835. PubMed ID: 37291267
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stratum corneum keratin structure, function, and formation: the cubic rod-packing and membrane templating model.
    Norlén L; Al-Amoudi A
    J Invest Dermatol; 2004 Oct; 123(4):715-32. PubMed ID: 15373777
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Analysis of keratin filament structural transformation in human epithelial cells].
    Chang RX; Pan YC
    Shi Yan Sheng Wu Xue Bao; 1993 Sep; 26(3):249-57. PubMed ID: 7514827
    [TBL] [Abstract][Full Text] [Related]  

  • 31. p38 MAPK-dependent shaping of the keratin cytoskeleton in cultured cells.
    Wöll S; Windoffer R; Leube RE
    J Cell Biol; 2007 Jun; 177(5):795-807. PubMed ID: 17535969
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dissection of keratin network formation, turnover and reorganization in living murine embryos.
    Schwarz N; Windoffer R; Magin TM; Leube RE
    Sci Rep; 2015 Mar; 5():9007. PubMed ID: 25759143
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assembly dynamics of epidermal keratins K1 and K10 in transfected cells.
    Paramio JM; Jorcano JL
    Exp Cell Res; 1994 Dec; 215(2):319-31. PubMed ID: 7526994
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stress-induced recruitment of epiplakin to keratin networks increases their resistance to hyperphosphorylation-induced disruption.
    Spazierer D; Raberger J; Gross K; Fuchs P; Wiche G
    J Cell Sci; 2008 Mar; 121(Pt 6):825-33. PubMed ID: 18285451
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Conformational changes in the rod domain of human keratin 8 following heterotypic association with keratin 18 and its implication for filament stability.
    Waseem A; Karsten U; Leigh IM; Purkis P; Waseem NH; Lane EB
    Biochemistry; 2004 Feb; 43(5):1283-95. PubMed ID: 14756564
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of Plectin Depletion on Keratin Network Dynamics and Organization.
    Moch M; Windoffer R; Schwarz N; Pohl R; Omenzetter A; Schnakenberg U; Herb F; Chaisaowong K; Merhof D; Ramms L; Fabris G; Hoffmann B; Merkel R; Leube RE
    PLoS One; 2016; 11(3):e0149106. PubMed ID: 27007410
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of keratin phosphorylation on the mechanical properties of keratin filaments in living cells.
    Fois G; Weimer M; Busch T; Felder ET; Oswald F; von Wichert G; Seufferlein T; Dietl P; Felder E
    FASEB J; 2013 Apr; 27(4):1322-9. PubMed ID: 23241311
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Observation of keratin particles showing fast bidirectional movement colocalized with microtubules.
    Liovic M; Mogensen MM; Prescott AR; Lane EB
    J Cell Sci; 2003 Apr; 116(Pt 8):1417-27. PubMed ID: 12640027
    [TBL] [Abstract][Full Text] [Related]  

  • 39. PKC412 normalizes mutation-related keratin filament disruption and hepatic injury in mice by promoting keratin-myosin binding.
    Kwan R; Chen L; Looi K; Tao GZ; Weerasinghe SV; Snider NT; Conti MA; Adelstein RS; Xie Q; Omary MB
    Hepatology; 2015 Dec; 62(6):1858-69. PubMed ID: 26126491
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Model for Bundling of Keratin Intermediate Filaments.
    Haimov E; Windoffer R; Leube RE; Urbakh M; Kozlov MM
    Biophys J; 2020 Jul; 119(1):65-74. PubMed ID: 32533940
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.