BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 1500464)

  • 21. [Determination of 39 fatty acids in liver of rats by gas chromatography-mass spectrometry].
    Wu YX; Mu Y; Liu PS; Zhang YT; Zeng YX; Zhou ZF
    Se Pu; 2023 May; 41(5):443-449. PubMed ID: 37087610
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Method for determination of fatty acids in bovine colostrum using GC-FID.
    Yurchenko S; Sats A; Poikalainen V; Karus A
    Food Chem; 2016 Dec; 212():117-22. PubMed ID: 27374514
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cholesterol-induced interfacial area condensations of galactosylceramides and sphingomyelins with identical acyl chains.
    Smaby JM; Momsen M; Kulkarni VS; Brown RE
    Biochemistry; 1996 May; 35(18):5696-704. PubMed ID: 8639529
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Less polar glycolipids in Alaskan pollack brain: isolation and characterization of acyl galactosyl diacylglycerol, acyl galactosyl ceramide, and acyl glucosyl ceramide.
    Tamai Y; Nakamura K; Takayama-Abe K; Uchida K; Kasama T; Kobatake H
    J Lipid Res; 1993 Apr; 34(4):601-8. PubMed ID: 8496665
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Composition of the neutral lipids of bovine meilbomian secretions.
    Baron C; Blough HA
    J Lipid Res; 1976 Jul; 17(4):373-6. PubMed ID: 950500
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Retinal sphingolipids and their very-long-chain fatty acid-containing species.
    Brush RS; Tran JT; Henry KR; McClellan ME; Elliott MH; Mandal MN
    Invest Ophthalmol Vis Sci; 2010 Sep; 51(9):4422-31. PubMed ID: 20393115
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Determining double-bond positions in monoenoic 2-hydroxy fatty acids of glucosylceramides by gas chromatography-mass spectrometry.
    Imai H; Yamamoto K; Shibahara A; Miyatani S; Nakayama T
    Lipids; 2000 Feb; 35(2):233-6. PubMed ID: 10757555
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation of Non-polar Composition in
    Dhalani J; Dubal G; Rathod C; Nariya P
    Folia Med (Plovdiv); 2020 Jun; 62(2):308-313. PubMed ID: 32666745
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Exploring the fatty acids of vernix caseosa in form of their methyl esters by off-line coupling of non-aqueous reversed phase high performance liquid chromatography and gas chromatography coupled to mass spectrometry.
    Hauff S; Vetter W
    J Chromatogr A; 2010 Dec; 1217(52):8270-8. PubMed ID: 21087771
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis of the fatty acid from Bupleurum Chinense DC in China by GC-MS and GC-FID.
    Li XQ; Song AH; Li W; Chen XH; Bi KS
    Chem Pharm Bull (Tokyo); 2005 Dec; 53(12):1613-7. PubMed ID: 16327203
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A high-performance direct transmethylation method for total fatty acids assessment in biological and foodstuff samples.
    Castro-Gómez P; Fontecha J; Rodríguez-Alcalá LM
    Talanta; 2014 Oct; 128():518-23. PubMed ID: 25059195
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rapid identification of fatty acids and (O-acyl)-ω-hydroxy fatty acids in human meibum by liquid chromatography/high-resolution mass spectrometry.
    Mori N; Fukano Y; Arita R; Shirakawa R; Kawazu K; Nakamura M; Amano S
    J Chromatogr A; 2014 Jun; 1347():129-36. PubMed ID: 24831422
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lipoxygenase products. A novel gas chromatographic-mass spectrometric assay for monohydroxy fatty acids.
    Woollard PM; Mallet AI
    J Chromatogr; 1984 Mar; 306():1-21. PubMed ID: 6425349
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids.
    Miller LT
    J Clin Microbiol; 1982 Sep; 16(3):584-6. PubMed ID: 7130373
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Separation of the fatty acids in menhaden oil as methyl esters with a highly polar ionic liquid gas chromatographic column and identification by time of flight mass spectrometry.
    Fardin-Kia AR; Delmonte P; Kramer JK; Jahreis G; Kuhnt K; Santercole V; Rader JI
    Lipids; 2013 Dec; 48(12):1279-95. PubMed ID: 24043585
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A novel method for the measurement of in vitro fatty acid 2-hydroxylase activity by gas chromatography-mass spectrometry.
    Alderson NL; Walla MD; Hama H
    J Lipid Res; 2005 Jul; 46(7):1569-75. PubMed ID: 15863841
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mathematical method for the prediction of retention times of fatty acid methyl esters in temperature-programmed capillary gas chromatography.
    Torres AG; Trugo NM; Trugo LC
    J Agric Food Chem; 2002 Jul; 50(15):4156-63. PubMed ID: 12105939
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chemical properties of epidermal lipids, especially sphingolipids, of the Antarctic minke whale.
    Yunoki K; Ishikawa H; Fukui Y; Ohnishi M
    Lipids; 2008 Feb; 43(2):151-9. PubMed ID: 18188633
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Drastically abnormal gluco- and galactosylceramide composition does not affect ganglioside metabolism in the brain of mice deficient in galactosylceramide synthase.
    Suzuki K; Vanier MT; Coetzee T; Popko B
    Neurochem Res; 1999 Apr; 24(4):471-4. PubMed ID: 10227678
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simultaneous determination by GC-MS of epoxy and hydroxy FA as their methoxy derivatives.
    Wilson R; Lyall K
    Lipids; 2002 Sep; 37(9):917-24. PubMed ID: 12458629
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.