These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 15004782)

  • 1. Chemical shift and magnetic susceptibility contributions to the separation of intracellular and supernatant resonances in variable angle spinning NMR spectra of erythrocyte suspensions.
    Philp DJ; Bubb WA; Kuchel PW
    Magn Reson Med; 2004 Mar; 51(3):441-4. PubMed ID: 15004782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water chemical shift in 1H NMR of red cells: effects of pH when transmembrane magnetic susceptibility differences are low.
    Larkin TJ; Bubb WA; Kuchel PW
    Magn Reson Med; 2008 Apr; 59(4):707-11. PubMed ID: 18383301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isotropic susceptibility shift under MAS: the origin of the split water resonances in 1H MAS NMR spectra of cell suspensions.
    Chen JH; Enloe BM; Xiao Y; Cory DG; Singer S
    Magn Reson Med; 2003 Sep; 50(3):515-21. PubMed ID: 12939759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. pH and cell volume effects on H2O and phosphoryl resonance splitting in rapid-spinning NMR of red cells.
    Larkin TJ; Bubb WA; Kuchel PW
    Biophys J; 2007 Mar; 92(5):1770-6. PubMed ID: 17158568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-resolution nuclear magnetic resonance spectroscopy of biological tissues using projected magic angle spinning.
    Martin RW; Jachmann RC; Sakellariou D; Nielsen UG; Pines A
    Magn Reson Med; 2005 Aug; 54(2):253-7. PubMed ID: 16032677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transmembrane 19F NMR chemical shift difference of fluorinated solutes in liposomes, erythrocytes and erythrocyte ghosts.
    Xu AS; Waldeck AR; Kuchel PW
    NMR Biomed; 1993; 6(2):136-43. PubMed ID: 8499244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spinning sidebands in slow-magic-angle-spinning NMR spectra arising from tightly J-coupled spin pairs.
    Wu G; Sun B; Wasylishen RE; Griffin RG
    J Magn Reson; 1997 Feb; 124(2):366-71. PubMed ID: 9169220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Symmetry-based recoupling of proton chemical shift anisotropies in ultrahigh-field solid-state NMR.
    Brouwer DH; Ripmeester JA
    J Magn Reson; 2007 Mar; 185(1):173-8. PubMed ID: 17188919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-dimensional chemical shift/heteronuclear dipolar coupling spectra obtained with polarization inversion spin exchange at the magic angle and magic-angle sample spinning (PISEMAMAS).
    Ramamoorthy A; Opella SJ
    Solid State Nucl Magn Reson; 1995 Aug; 4(6):387-92. PubMed ID: 8581437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct observation of resolved intracellular and extracellular water signals in intact human red blood cells using 1H MAS NMR spectroscopy.
    Humpfer E; Spraul M; Nicholls AW; Nicholson JK; Lindon JC
    Magn Reson Med; 1997 Aug; 38(2):334-6. PubMed ID: 9256115
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Localized in vivo isotropic-anisotropic correlation 1H NMR spectroscopy using ultraslow magic angle spinning.
    Wind RA; Hu JZ; Majors PD
    Magn Reson Med; 2006 Jan; 55(1):41-9. PubMed ID: 16315205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Homonuclear dipolar recoupling under ultra-fast magic-angle spinning: probing 19F-19F proximities by solid-state NMR.
    Wang Q; Hu B; Lafon O; Trébosc J; Deng F; Amoureux JP
    J Magn Reson; 2010 Mar; 203(1):113-28. PubMed ID: 20044288
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variable angle NMR spectroscopy and its application to the measurement of residual chemical shift anisotropy.
    Kummerlöwe G; Grage SL; Thiele CM; Kuprov I; Ulrich AS; Luy B
    J Magn Reson; 2011 Mar; 209(1):19-30. PubMed ID: 21256060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The contribution of magnetic susceptibility effects to transmembrane chemical shift differences in the 31P NMR spectra of oxygenated erythrocyte suspensions.
    Kirk K; Kuchel PW
    J Biol Chem; 1988 Jan; 263(1):130-4. PubMed ID: 3275636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of transmembrane chemical shift differences in the 31P NMR spectra of various phosphoryl compounds added to erythrocyte suspensions.
    Kirk K; Kuchel PW
    Biochemistry; 1988 Nov; 27(24):8795-802. PubMed ID: 3242609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrical and ionic conductivity effects on magic-angle spinning nuclear magnetic resonance parameters of CuI.
    Yesinowski JP; Ladouceur HD; Purdy AP; Miller JB
    J Chem Phys; 2010 Dec; 133(23):234509. PubMed ID: 21186877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of proton chemical-shift anisotropy on magic-angle spinning spectra of hydrate crystals.
    Tekely P; Palmas P; Mutzenhardt P
    J Magn Reson; 1997 Aug; 127(2):238-40. PubMed ID: 9281490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of scaled residual dipolar couplings in proteins using variable-angle sample spinning.
    Lancelot N; Elbayed K; Bianco A; Piotto M
    J Biomol NMR; 2004 Jul; 29(3):259-69. PubMed ID: 15213424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assignment of 13C resonances of a nematic liquid crystal using off-magic angle spinning.
    Vinay Deepak HS; Joy A; Suryaprakash N; Ramanathan KV
    Magn Reson Chem; 2004 Apr; 42(4):409-13. PubMed ID: 15022203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon-13 and fluorine-19 NMR spectroscopy of the supramolecular solid p-tert-butylcalix(4)arene.alpha,alpha,alpha-trifluorotoluene.
    Brouwer EB; Challoner R; Harris RK
    Solid State Nucl Magn Reson; 2000; 18(1-4):37-52. PubMed ID: 11270740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.