BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 15004809)

  • 1. Removing the effect of SVD algorithmic artifacts present in quantitative MR perfusion studies.
    Smith MR; Lu H; Trochet S; Frayne R
    Magn Reson Med; 2004 Mar; 51(3):631-4. PubMed ID: 15004809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An alternative viewpoint of the similarities and differences of SVD and FT deconvolution algorithms used for quantitative MR perfusion studies.
    Salluzzi M; Frayne R; Smith MR
    Magn Reson Imaging; 2005 Apr; 23(3):481-92. PubMed ID: 15862650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved residue function and reduced flow dependence in MR perfusion using least-absolute-deviation regularization.
    Wong KK; Tam CP; Ng M; Wong ST; Young GS
    Magn Reson Med; 2009 Feb; 61(2):418-28. PubMed ID: 19161133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tracer delay correction of cerebral blood flow with dynamic susceptibility contrast-enhanced MRI.
    Ibaraki M; Shimosegawa E; Toyoshima H; Takahashi K; Miura S; Kanno I
    J Cereb Blood Flow Metab; 2005 Mar; 25(3):378-90. PubMed ID: 15674238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of regional tracer delay on CBF in healthy subjects measured with dynamic susceptibility contrast-enhanced MRI: comparison with 15O-PET.
    Ibaraki M; Shimosegawa E; Toyoshima H; Ishigame K; Ito H; Takahashi K; Miura S; Kanno I
    Magn Reson Med Sci; 2005; 4(1):27-34. PubMed ID: 16127251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reassessing the clinical efficacy of two MR quantitative DSC PWI CBF algorithms following cross-calibration with PET images.
    Chen JJ; Frayne R; Smith MR
    Phys Med Biol; 2005 Mar; 50(6):1251-63. PubMed ID: 15798320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PerfTool: a software platform for investigating bolus-tracking perfusion imaging quantification strategies.
    Kosior JC; Frayne R
    J Magn Reson Imaging; 2007 Mar; 25(3):653-9. PubMed ID: 17326077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advantages of frequency-domain modeling in dynamic-susceptibility contrast magnetic resonance cerebral blood flow quantification.
    Chen JJ; Smith MR; Frayne R
    Magn Reson Med; 2005 Mar; 53(3):700-7. PubMed ID: 15723395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mathematical Framework of Deconvolution Algorithms for Quantification of Perfusion Parameters.
    Yang F; Bal SSB; Sung YF; Peng GS
    Acta Neurol Taiwan; 2020 Sep; 29(3)():79-85. PubMed ID: 32996115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A control point interpolation method for the non-parametric quantification of cerebral haemodynamics from dynamic susceptibility contrast MRI.
    Mehndiratta A; MacIntosh BJ; Crane DE; Payne SJ; Chappell MA
    Neuroimage; 2013 Jan; 64():560-70. PubMed ID: 22975158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wavelet-based noise reduction for improved deconvolution of time-series data in dynamic susceptibility-contrast MRI.
    Wirestam R; Ståhlberg F
    MAGMA; 2005 Jul; 18(3):113-8. PubMed ID: 15887036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Whole brain quantitative CBF and CBV measurements using MRI bolus tracking: comparison of methodologies.
    Smith AM; Grandin CB; Duprez T; Mataigne F; Cosnard G
    Magn Reson Med; 2000 Apr; 43(4):559-64. PubMed ID: 10748431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of tracer delay effect in whole-brain computed tomography perfusion: results for selected regions of interest in middle cerebral artery acute ischemic strokes.
    Hanson EH; Roach CJ; Day KJ; Ghosh K; Peters KR; Bradley WG; Orrison WW
    J Comput Assist Tomogr; 2013; 37(2):222-32. PubMed ID: 23493211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cerebral blood flow estimation in vivo using local tissue reference functions.
    Kosior JC; Smith MR; Kosior RK; Frayne R
    J Magn Reson Imaging; 2009 Jan; 29(1):183-8. PubMed ID: 19097104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Perfusion quantification by model-free arterial spin labeling using nonlinear stochastic regularization deconvolution.
    Ahlgren A; Wirestam R; Petersen ET; Ståhlberg F; Knutsson L
    Magn Reson Med; 2013 Nov; 70(5):1470-80. PubMed ID: 23281031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A microfabricated phantom for quantitative MR perfusion measurements: validation of singular value decomposition deconvolution method.
    Ebrahimi B; Swanson SD; Chupp TE
    IEEE Trans Biomed Eng; 2010 Nov; 57(11):. PubMed ID: 20601306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cerebral blood flow estimation from perfusion-weighted MRI using FT-based MMSE filtering method.
    Sakoglu U; Sood R
    Magn Reson Imaging; 2008 Apr; 26(3):313-22. PubMed ID: 18158225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Is correction necessary when clinically determining quantitative cerebral perfusion parameters from multi-slice dynamic susceptibility contrast MR studies?
    Salluzzi M; Frayne R; Smith MR
    Phys Med Biol; 2006 Jan; 51(2):407-24. PubMed ID: 16394347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of clinical data of nonlinear stochastic deconvolution versus block-circulant singular value decomposition for quantitative dynamic susceptibility contrast magnetic resonance imaging.
    Peruzzo D; Zanderigo F; Bertoldo A; Pillonetto G; Cosottini M; Cobelli C
    Magn Reson Imaging; 2011 Sep; 29(7):927-36. PubMed ID: 21616625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robust dynamic susceptibility contrast MR perfusion using 4D nonlinear noise filters.
    Kosior JC; Kosior RK; Frayne R
    J Magn Reson Imaging; 2007 Dec; 26(6):1514-22. PubMed ID: 17968968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.