BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 15004809)

  • 21. DSC perfusion MRI-Quantification and reduction of systematic errors arising in areas of reduced cerebral blood flow.
    Carpenter TK; Armitage PA; Bastin ME; Wardlaw JM
    Magn Reson Med; 2006 Jun; 55(6):1342-9. PubMed ID: 16683256
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reliability of CT perfusion-derived CBF in relation to hemodynamic compromise in patients with cerebrovascular steno-occlusive disease: a comparative study with 15O PET.
    Ibaraki M; Ohmura T; Matsubara K; Kinoshita T
    J Cereb Blood Flow Metab; 2015 Aug; 35(8):1280-8. PubMed ID: 25757749
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Deconvolution with simple extrapolation for improved cerebral blood flow measurement in dynamic susceptibility contrast magnetic resonance imaging during acute ischemic stroke.
    MacDonald ME; Smith MR; Frayne R
    Magn Reson Imaging; 2011 Jun; 29(5):620-9. PubMed ID: 21546188
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantification of bolus-tracking MRI: Improved characterization of the tissue residue function using Tikhonov regularization.
    Calamante F; Gadian DG; Connelly A
    Magn Reson Med; 2003 Dec; 50(6):1237-47. PubMed ID: 14648572
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Aspects on the accuracy of cerebral perfusion parameters obtained by dynamic susceptibility contrast MRI: a simulation study.
    Knutsson L; Ståhlberg F; Wirestam R
    Magn Reson Imaging; 2004 Jul; 22(6):789-98. PubMed ID: 15234447
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantitative cerebral perfusion using dynamic susceptibility contrast MRI: evaluation of reproducibility and age- and gender-dependence with fully automatic image postprocessing algorithm.
    Shin W; Horowitz S; Ragin A; Chen Y; Walker M; Carroll TJ
    Magn Reson Med; 2007 Dec; 58(6):1232-41. PubMed ID: 17969025
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The impact of peak saturation of the arterial input function on quantitative evaluation of dynamic susceptibility contrast-enhanced MR studies.
    Ellinger R; Kremser C; Schocke MF; Kolbitsch C; Griebel J; Felber SR; Aichner FT
    J Comput Assist Tomogr; 2000; 24(6):942-8. PubMed ID: 11105716
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bolus delay and dispersion in perfusion MRI: implications for tissue predictor models in stroke.
    Calamante F; Willats L; Gadian DG; Connelly A
    Magn Reson Med; 2006 May; 55(5):1180-5. PubMed ID: 16598717
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Differences in CT perfusion maps generated by different commercial software: quantitative analysis by using identical source data of acute stroke patients.
    Kudo K; Sasaki M; Yamada K; Momoshima S; Utsunomiya H; Shirato H; Ogasawara K
    Radiology; 2010 Jan; 254(1):200-9. PubMed ID: 20032153
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Signal-to-noise ratio effects in quantitative cerebral perfusion using dynamic susceptibility contrast agents.
    Smith MR; Lu H; Frayne R
    Magn Reson Med; 2003 Jan; 49(1):122-8. PubMed ID: 12509827
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tracer arrival timing-insensitive technique for estimating flow in MR perfusion-weighted imaging using singular value decomposition with a block-circulant deconvolution matrix.
    Wu O; Østergaard L; Weisskoff RM; Benner T; Rosen BR; Sorensen AG
    Magn Reson Med; 2003 Jul; 50(1):164-74. PubMed ID: 12815691
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regional and voxel-wise comparisons of blood flow measurements between dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) and arterial spin labeling (ASL) in brain tumors.
    White CM; Pope WB; Zaw T; Qiao J; Naeini KM; Lai A; Nghiemphu PL; Wang JJ; Cloughesy TF; Ellingson BM
    J Neuroimaging; 2014; 24(1):23-30. PubMed ID: 22672084
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamic susceptibility contrast MRI with a prebolus contrast agent administration design for improved absolute quantification of perfusion.
    Knutsson L; Lindgren E; Ahlgren A; van Osch MJ; Bloch KM; Surova Y; Ståhlberg F; van Westen D; Wirestam R
    Magn Reson Med; 2014 Oct; 72(4):996-1006. PubMed ID: 24285621
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Perfusion quantification using Gaussian process deconvolution.
    Andersen IK; Szymkowiak A; Rasmussen CE; Hanson LG; Marstrand JR; Larsson HB; Hansen LK
    Magn Reson Med; 2002 Aug; 48(2):351-61. PubMed ID: 12210944
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [A capillary-based perfusion phantom for the simulation of brain perfusion for MRI].
    Maciak A; Kronfeld A; Müller-Forell W; Wille C; Kempski O; Stoeter P
    Rofo; 2010 Oct; 182(10):883-90. PubMed ID: 20563961
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tracer delay-insensitive algorithm can improve reliability of CT perfusion imaging for cerebrovascular steno-occlusive disease: comparison with quantitative single-photon emission CT.
    Sasaki M; Kudo K; Ogasawara K; Fujiwara S
    AJNR Am J Neuroradiol; 2009 Jan; 30(1):188-93. PubMed ID: 18768719
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis of perfusion MRI in stroke: To deconvolve, or not to deconvolve.
    Meijs M; Christensen S; Lansberg MG; Albers GW; Calamante F
    Magn Reson Med; 2016 Oct; 76(4):1282-90. PubMed ID: 26519871
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Difference in tracer delay-induced effect among deconvolution algorithms in CT perfusion analysis: quantitative evaluation with digital phantoms.
    Kudo K; Sasaki M; Ogasawara K; Terae S; Ehara S; Shirato H
    Radiology; 2009 Apr; 251(1):241-9. PubMed ID: 19190251
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Correction for arterial-tissue delay and dispersion in absolute quantitative cerebral perfusion DSC MR imaging.
    Mouannes-Srour JJ; Shin W; Ansari SA; Hurley MC; Vakil P; Bendok BR; Lee JL; Derdeyn CP; Carroll TJ
    Magn Reson Med; 2012 Aug; 68(2):495-506. PubMed ID: 22162092
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Autoregressive moving average (ARMA) model applied to quantification of cerebral blood flow using dynamic susceptibility contrast-enhanced magnetic resonance imaging.
    Murase K; Yamazaki Y; Shinohara M
    Magn Reson Med Sci; 2003 Jul; 2(2):85-95. PubMed ID: 16210825
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.