These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 15005317)

  • 1. The spatial resolution improvement of EIT images by GVSPM-FOCUSS algorithm.
    Dong G; Liu H; Bayford RH; Yerworth R; Gao S; Holder D; Yan W
    Physiol Meas; 2004 Feb; 25(1):209-25. PubMed ID: 15005317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial resolution improvement of 3D EIT images by the shrinking sLORETA-FOCUSS algorithm.
    Dong G; Liu H; Bayford RH; Yerworth R; Schimpf PH; Yan W
    Physiol Meas; 2005 Apr; 26(2):S199-208. PubMed ID: 15798233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The application of the generalized vector sample pattern matching method for EIT image reconstruction.
    Dong G; Bayford RH; Gao S; Saito Y; Yerworth R; Holder D; Yan W
    Physiol Meas; 2003 May; 24(2):449-66. PubMed ID: 12812429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EIT images with improved spatial resolution using a realistic head model.
    Dong G; Bayford R; Liu H; Zhou Y; Yan W
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1134-7. PubMed ID: 17945623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Image Reconstruction Under Contact Impedance Effect in Micro Electrical Impedance Tomography Sensors.
    Liu X; Yao J; Zhao T; Obara H; Cui Y; Takei M
    IEEE Trans Biomed Circuits Syst; 2018 Jun; 12(3):623-631. PubMed ID: 29877825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Research of electrical impedance tomography based on multilayer artificial neural network optimized by Hadamard product for human-chest models].
    Song Z; Li J; Wen J; Wan N; Ma J; Zhang Y; Hu Y; Gao Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2024 Jun; 41(3):439-446. PubMed ID: 38932528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lobe based image reconstruction in Electrical Impedance Tomography.
    Schullcke B; Gong B; Krueger-Ziolek S; Tawhai M; Adler A; Mueller-Lisse U; Moeller K
    Med Phys; 2017 Feb; 44(2):426-436. PubMed ID: 28121374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuromagnetic source imaging with FOCUSS: a recursive weighted minimum norm algorithm.
    Gorodnitsky IF; George JS; Rao BD
    Electroencephalogr Clin Neurophysiol; 1995 Oct; 95(4):231-51. PubMed ID: 8529554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Image reconstruction in electrical impedance tomography based on genetic algorithm].
    Hou W; Mo Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2003 Mar; 20(1):107-10. PubMed ID: 12744177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A recursive algorithm for the three-dimensional imaging of brain electric activity: Shrinking LORETA-FOCUSS.
    Liu H; Gao X; Schimpf PH; Yang F; Gao S
    IEEE Trans Biomed Eng; 2004 Oct; 51(10):1794-802. PubMed ID: 15490826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uniqueness and reconstruction in magnetic resonance-electrical impedance tomography (MR-EIT).
    Ider YZ; Onart S; Lionheart WR
    Physiol Meas; 2003 May; 24(2):591-604. PubMed ID: 12812441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new algorithm to reconstruct EIT images: Node-Back-Projection Algorithm.
    Zhang J; Yan W; Xu G; Zhao Q
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():4390-3. PubMed ID: 18002977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of methods for measurement of spatial resolution in two-dimensional circular EIT images.
    Wheeler JL; Wang W; Tang M
    Physiol Meas; 2002 Feb; 23(1):169-76. PubMed ID: 11876230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Induced current electrical impedance tomography system: experimental results and numerical simulations.
    Zlochiver S; Radai MM; Abboud S; Rosenfeld M; Dong XZ; Liu RG; You FS; Xiang HY; Shi XT
    Physiol Meas; 2004 Feb; 25(1):239-55. PubMed ID: 15005319
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temporal image reconstruction in electrical impedance tomography.
    Adler A; Dai T; Lionheart WR
    Physiol Meas; 2007 Jul; 28(7):S1-11. PubMed ID: 17664627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The boundary element method in the forward and inverse problem of electrical impedance tomography.
    de Munck JC; Faes TJ; Heethaar RM
    IEEE Trans Biomed Eng; 2000 Jun; 47(6):792-800. PubMed ID: 10833854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Individual thorax geometry reduces position and size differences in reconstructed images of electrical impedance tomography.
    Zhao Z; Frerichs I; Pulletz S; Müller-Lisse U; Möller K
    J Xray Sci Technol; 2014; 22(6):797-807. PubMed ID: 25408396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validation of a 3D reconstruction algorithm for EIT of human brain function in a realistic head-shaped tank.
    Tidswell AT; Gibson A; Bayford RH; Holder DS
    Physiol Meas; 2001 Feb; 22(1):177-85. PubMed ID: 11236878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distributed network imaging and electrical impedance tomography of minimally invasive surgery.
    Otten DM; Onik G; Rubinsky B
    Technol Cancer Res Treat; 2004 Apr; 3(2):125-34. PubMed ID: 15059018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrical impedance tomography of human brain function using reconstruction algorithms based on the finite element method.
    Bagshaw AP; Liston AD; Bayford RH; Tizzard A; Gibson AP; Tidswell AT; Sparkes MK; Dehghani H; Binnie CD; Holder DS
    Neuroimage; 2003 Oct; 20(2):752-64. PubMed ID: 14568449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.