These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 15005412)

  • 1. Transmission through single subwavelength apertures in thin metal films and effects of surface plasmons.
    Vallius T; Turunen J; Mansuripur M; Honkanen S
    J Opt Soc Am A Opt Image Sci Vis; 2004 Mar; 21(3):456-63. PubMed ID: 15005412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A method to design transmission resonances through subwavelength apertures based on designed surface plasmons.
    Liu J; Ding L; Wang K; Yao J
    Opt Express; 2009 Jul; 17(15):12714-22. PubMed ID: 19654677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced transmission of transverse electric waves through periodic arrays of structured subwavelength apertures.
    Xiao S; Peng L; Mortensen NA
    Opt Express; 2010 Mar; 18(6):6040-7. PubMed ID: 20389624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmonic control of extraordinary optical transmission in the infrared regime.
    Sangiao S; Freire F; de León-Pérez F; Rodrigo SG; De Teresa JM
    Nanotechnology; 2016 Dec; 27(50):505202. PubMed ID: 27841162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extraordinary transmission of metal films with arrays of subwavelength holes.
    Coe JV; Heer JM; Teeters-Kennedy S; Tian H; Rodriguez KR
    Annu Rev Phys Chem; 2008; 59():179-202. PubMed ID: 17988200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Approximate model for surface-plasmon generation at slit apertures.
    Lalanne P; Hugonin JP; Rodier JC
    J Opt Soc Am A Opt Image Sci Vis; 2006 Jul; 23(7):1608-15. PubMed ID: 16783423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The coherence effect of surface plasmons on optical transmission in silver subwavelength hole arrays.
    Tang ZH; Wang Z; Zhang ZJ; Peng RW; Wu X; Li D; Sun WH; Gao F; Wang M
    J Nanosci Nanotechnol; 2009 Feb; 9(2):985-9. PubMed ID: 19441437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Field enhancement in metallic subwavelength aperture arrays probed by erbium upconversion luminescence.
    Verhagen E; Kuipers L; Polman A
    Opt Express; 2009 Aug; 17(17):14586-98. PubMed ID: 19687938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extraordinary optical transmission through hole arrays in optically thin metal films.
    Rodrigo SG; Martín-Moreno L; Nikitin AY; Kats AV; Spevak IS; García-Vidal FJ
    Opt Lett; 2009 Jan; 34(1):4-6. PubMed ID: 19109621
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complete polarimetry on the asymmetric transmission through subwavelength hole arrays.
    Arteaga O; Maoz BM; Nichols S; Markovich G; Kahr B
    Opt Express; 2014 Jun; 22(11):13719-32. PubMed ID: 24921565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New approach for extraordinary transmission through an array of subwavelength apertures using thin ENNZ metamaterial liners.
    Baladi E; Pollock JG; Iyer AK
    Opt Express; 2015 Aug; 23(16):20356-65. PubMed ID: 26367891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of optical transmission through metals perforated with subwavelength hole arrays.
    Kim TJ; Thio T; Ebbesen TW; Grupp DE; Lezec HJ
    Opt Lett; 1999 Feb; 24(4):256-8. PubMed ID: 18071472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theory of transmission of light by sub-wavelength cylindrical holes in metallic films.
    García N; Bai M
    Opt Express; 2006 Oct; 14(21):10028-42. PubMed ID: 19529397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Near-field characterization of extraordinary optical transmission in sub-wavelength aperture arrays.
    Mrejen M; Israel A; Taha H; Palchan M; Lewis A
    Opt Express; 2007 Jul; 15(15):9129-38. PubMed ID: 19547253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theory of extraordinary optical transmission through subwavelength hole arrays.
    Martín-Moreno L; García-Vidal FJ; Lezec HJ; Pellerin KM; Thio T; Pendry JB; Ebbesen TW
    Phys Rev Lett; 2001 Feb; 86(6):1114-7. PubMed ID: 11178023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modal analysis of metallic screen with finite conductivity perforated by array of subwavelength rectangular flared holes.
    Kehn MNM
    Opt Express; 2018 Dec; 26(25):32981-33004. PubMed ID: 30645457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface plasmon lasing observed in metal hole arrays.
    van Beijnum F; van Veldhoven PJ; Geluk EJ; de Dood MJ; 't Hooft GW; van Exter MP
    Phys Rev Lett; 2013 May; 110(20):206802. PubMed ID: 25167437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays.
    Lezec H; Thio T
    Opt Express; 2004 Aug; 12(16):3629-51. PubMed ID: 19483895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extraordinary mid-infrared transmission of subwavelength holes in gold films.
    Yue W; Wang Z; Yang Y; Chen L; Syed A; Wang X
    J Nanosci Nanotechnol; 2014 Apr; 14(4):3017-21. PubMed ID: 24734727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design principles for optoelectronic applications of extraordinary light transmission effect in plasmonics nanoapertures.
    Yanik AA; Adato R; Altug H
    J Nanosci Nanotechnol; 2010 Mar; 10(3):1713-8. PubMed ID: 20355562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.