These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 15005670)

  • 1. Phakometric measurement of ocular surface radii of curvature, axial separations and alignment in relaxed and accommodated human eyes.
    Kirschkamp T; Dunne M; Barry JC
    Ophthalmic Physiol Opt; 2004 Mar; 24(2):65-73. PubMed ID: 15005670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in ocular dimensions and refraction with accommodation.
    Garner LF; Yap MK
    Ophthalmic Physiol Opt; 1997 Jan; 17(1):12-7. PubMed ID: 9135807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in equivalent and gradient refractive index of the crystalline lens with accommodation.
    Garner LF; Smith G
    Optom Vis Sci; 1997 Feb; 74(2):114-9. PubMed ID: 9097329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in crystalline lens radii of curvature and lens tilt and decentration during dynamic accommodation in rhesus monkeys.
    Rosales P; Wendt M; Marcos S; Glasser A
    J Vis; 2008 Jan; 8(1):18.1-12. PubMed ID: 18318621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phakometric measurement of ocular surface radius of curvature and alignment: evaluation of method with physical model eyes.
    Barry JC; Dunne M; Kirschkamp T
    Ophthalmic Physiol Opt; 2001 Nov; 21(6):450-60. PubMed ID: 11727873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-invasive phakometric measurement of corneal and crystalline lens alignment in human eyes.
    Dunne MC; Davies LN; Mallen EA; Kirschkamp T; Barry JC
    Ophthalmic Physiol Opt; 2005 Mar; 25(2):143-52. PubMed ID: 15713206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-invasive measurements of the dynamic changes in the ciliary muscle, crystalline lens morphology, and anterior chamber during accommodation with a high-resolution OCT.
    Esteve-Taboada JJ; Domínguez-Vicent A; Monsálvez-Romín D; Del Águila-Carrasco AJ; Montés-Micó R
    Graefes Arch Clin Exp Ophthalmol; 2017 Jul; 255(7):1385-1394. PubMed ID: 28424868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous measurements of refraction and A-scan biometry during accommodation in humans.
    Ostrin L; Kasthurirangan S; Win-Hall D; Glasser A
    Optom Vis Sci; 2006 Sep; 83(9):657-65. PubMed ID: 16971844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Slit-lamp studies of the rhesus monkey eye: II. Changes in crystalline lens shape, thickness and position during accommodation and aging.
    Koretz JF; Bertasso AM; Neider MW; True-Gabelt BA; Kaufman PL
    Exp Eye Res; 1987 Aug; 45(2):317-26. PubMed ID: 3653294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the ocular refractive components: the Reykjavik Eye Study.
    Olsen T; Arnarsson A; Sasaki H; Sasaki K; Jonasson F
    Acta Ophthalmol Scand; 2007 Jun; 85(4):361-6. PubMed ID: 17286626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of pseudophakic accommodation with translation lenses using Purkinje image analysis.
    Langenbucher A; Jakob C; Reese S; Seitz B
    Ophthalmic Physiol Opt; 2005 Mar; 25(2):87-96. PubMed ID: 15713200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calculation of crystalline lens radii without resort to phakometry.
    Royston JM; Dunne MC; Barnes DA
    Ophthalmic Physiol Opt; 1989 Oct; 9(4):412-4. PubMed ID: 2631008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasonographic study of 100 emmetropic eyes.
    François J; Goes F
    Ophthalmologica; 1977; 175(6):321-7. PubMed ID: 593658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ocular anterior segment biometry and high-order wavefront aberrations during accommodation.
    Yuan Y; Shao Y; Tao A; Shen M; Wang J; Shi G; Chen Q; Zhu D; Lian Y; Qu J; Zhang Y; Lu F
    Invest Ophthalmol Vis Sci; 2013 Oct; 54(10):7028-37. PubMed ID: 24065809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The axial misalignment between ocular lens and cornea observed by MRI (I)--at fixed accommodative state.
    Chang Y; Wu HM; Lin YF
    Vision Res; 2007 Jan; 47(1):71-84. PubMed ID: 17084432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [A review of mathematical descriptors of corneal asphericity].
    Gatinel D; Haouat M; Hoang-Xuan T
    J Fr Ophtalmol; 2002 Jan; 25(1):81-90. PubMed ID: 11965125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effect of ocular accommodation on refractive components in children].
    Gao L; Wang J; Zhuo X; Yu N; Ma L
    Yan Ke Xue Bao; 2002 Dec; 18(4):208-13. PubMed ID: 15515761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrasonic measurements of the eye in the newborn infant.
    Blomdahl S
    Acta Ophthalmol (Copenh); 1979; 57(6):1048-56. PubMed ID: 546001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of the axial length/corneal radius ratio in determining the refractive state of the eye.
    Grosvenor T; Scott R
    Optom Vis Sci; 1994 Sep; 71(9):573-9. PubMed ID: 7816428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Axial growth and changes in lenticular and corneal power during emmetropization in infants.
    Mutti DO; Mitchell GL; Jones LA; Friedman NE; Frane SL; Lin WK; Moeschberger ML; Zadnik K
    Invest Ophthalmol Vis Sci; 2005 Sep; 46(9):3074-80. PubMed ID: 16123404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.