BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 15005714)

  • 21. Zebrafish models of autism spectrum disorder.
    Meshalkina DA; N Kizlyk M; V Kysil E; Collier AD; Echevarria DJ; Abreu MS; Barcellos LJG; Song C; Warnick JE; Kyzar EJ; Kalueff AV
    Exp Neurol; 2018 Jan; 299(Pt A):207-216. PubMed ID: 28163161
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The evolutionarily conserved role of melatonin in CNS disorders and behavioral regulation: Translational lessons from zebrafish.
    Genario R; Giacomini ACVV; Demin KA; Dos Santos BE; Marchiori NI; Volgin AD; Bashirzade A; Amstislavskaya TG; de Abreu MS; Kalueff AV
    Neurosci Biobehav Rev; 2019 Apr; 99():117-127. PubMed ID: 30611799
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Zebrafish: a genetic model for vertebrate organogenesis and human disorders.
    Ackermann GE; Paw BH
    Front Biosci; 2003 Sep; 8():d1227-53. PubMed ID: 12957827
    [TBL] [Abstract][Full Text] [Related]  

  • 24. QTL analysis of behavioral and morphological differentiation between wild and laboratory zebrafish (Danio rerio).
    Wright D; Nakamichi R; Krause J; Butlin RK
    Behav Genet; 2006 Mar; 36(2):271-84. PubMed ID: 16408248
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Seeing the whole picture: A comprehensive imaging approach to functional mapping of circuits in behaving zebrafish.
    Feierstein CE; Portugues R; Orger MB
    Neuroscience; 2015 Jun; 296():26-38. PubMed ID: 25433239
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Zebrafish models of diabetes-related CNS pathogenesis.
    Lakstygal AM; de Abreu MS; Lifanov DA; Wappler-Guzzetta EA; Serikuly N; Alpsyshov ET; Wang D; Wang M; Tang Z; Yan D; Demin KA; Volgin AD; Amstislavskaya TG; Wang J; Song C; Alekseeva P; Kalueff AV
    Prog Neuropsychopharmacol Biol Psychiatry; 2019 Jun; 92():48-58. PubMed ID: 30476525
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Zebrafish models for attention deficit hyperactivity disorder (ADHD).
    Fontana BD; Franscescon F; Rosemberg DB; Norton WHJ; Kalueff AV; Parker MO
    Neurosci Biobehav Rev; 2019 May; 100():9-18. PubMed ID: 30779935
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modeling Neuronal Diseases in Zebrafish in the Era of CRISPR.
    Espino-Saldaña AE; Rodríguez-Ortiz R; Pereida-Jaramillo E; Martínez-Torres A
    Curr Neuropharmacol; 2020; 18(2):136-152. PubMed ID: 31573887
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Disease Modeling of Rare Neurological Disorders in Zebrafish.
    Son M; Kim DY; Kim CH
    Int J Mol Sci; 2022 Apr; 23(7):. PubMed ID: 35409306
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Forward Genetic Screening Using Behavioral Tests in Zebrafish: A Proof of Concept Analysis of Mutants.
    Gerlai R; Poshusta TL; Rampersad M; Fernandes Y; Greenwood TM; Cousin MA; Klee EW; Clark KJ
    Behav Genet; 2017 Jan; 47(1):125-139. PubMed ID: 27704300
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of estrogen in the developmental appearance of sensory-motor behaviors in the zebrafish (Danio rerio): the characterization of the "listless" model.
    Nelson BP; Henriet RP; Holt AW; Bopp KC; Houser AP; Allgood OE; Turner JE
    Brain Res; 2008 Jul; 1222():118-28. PubMed ID: 18586226
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-throughput behavioral screens: the first step towards finding genes involved in vertebrate brain function using zebrafish.
    Gerlai R
    Molecules; 2010 Apr; 15(4):2609-22. PubMed ID: 20428068
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genetic dissection of vertebrate processes in the zebrafish: a comparison of uniparental and two-generation screens.
    Cheng KC; Moore JL
    Biochem Cell Biol; 1997; 75(5):525-33. PubMed ID: 9551177
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Physical exercise improves learning in zebrafish, Danio rerio.
    Luchiari AC; Chacon DM
    Behav Processes; 2013 Nov; 100():44-7. PubMed ID: 23933376
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fishing in the Cell Powerhouse: Zebrafish as A Tool for Exploration of Mitochondrial Defects Affecting the Nervous System.
    Fichi G; Naef V; Barca A; Longo G; Fronte B; Verri T; Santorelli FM; Marchese M; Petruzzella V
    Int J Mol Sci; 2019 May; 20(10):. PubMed ID: 31096646
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Zebrafish Behavior: Opportunities and Challenges.
    Orger MB; de Polavieja GG
    Annu Rev Neurosci; 2017 Jul; 40():125-147. PubMed ID: 28375767
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Zebrafish models: Gaining insight into purinergic signaling and neurological disorders.
    Nabinger DD; Altenhofen S; Bonan CD
    Prog Neuropsychopharmacol Biol Psychiatry; 2020 Mar; 98():109770. PubMed ID: 31678483
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Social modulation of brain monoamine levels in zebrafish.
    Teles MC; Dahlbom SJ; Winberg S; Oliveira RF
    Behav Brain Res; 2013 Sep; 253():17-24. PubMed ID: 23850359
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Experiments on learning in zebrafish (Danio rerio): a promising model of neurocognitive function.
    Blaser RE; Vira DG
    Neurosci Biobehav Rev; 2014 May; 42():224-31. PubMed ID: 24631853
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The behaviour and ecology of the zebrafish, Danio rerio.
    Spence R; Gerlach G; Lawrence C; Smith C
    Biol Rev Camb Philos Soc; 2008 Feb; 83(1):13-34. PubMed ID: 18093234
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.