These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 15006046)

  • 1. Evaluation of a bifocal reflector on a clinical lithotripter.
    Loske AM; Prieto FE; Gutierrez J; Zendejas H; Saita A; Velez Gomez E
    J Endourol; 2004 Feb; 18(1):7-15; discussion 15-6. PubMed ID: 15006046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bifocal reflector for electrohydraulic lithotripters.
    Prieto FE; Loske AM
    J Endourol; 1999 Mar; 13(2):65-75. PubMed ID: 10213098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pressure-release versus rigid reflector for extracorporeal shockwave lithotripsy.
    Loske AM; Prieto FE
    J Endourol; 2002 Jun; 16(5):273-80. PubMed ID: 12184076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shifting the Split Reflectors to Enhance Stone Fragmentation of Shock Wave Lithotripsy.
    Wang JC; Zhou Y
    Ultrasound Med Biol; 2016 Aug; 42(8):1876-89. PubMed ID: 27166016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synchronous twin-pulse technique to improve efficacy of SWL: preliminary results of an experimental study.
    Sheir KZ; El-Sheikh AM; Ghoneim MA
    J Endourol; 2001 Dec; 15(10):965-74. PubMed ID: 11789977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of Broad vs Narrow Focal Width Lithotripter Fields.
    Xing Y; Chen TT; Simmons WN; Sankin G; Cocks FH; Lipkin ME; Preminger GM; Zhong P
    J Endourol; 2017 May; 31(5):502-509. PubMed ID: 28340536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficacy of the Duet lithotripter using two energy sources for stone fragmentation by shockwaves: an in vitro study.
    Greenstein A; Sofer M; Matzkin H
    J Endourol; 2004 Dec; 18(10):942-5. PubMed ID: 15801358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of electrohydraulic lithotripters with rigid and pressure-release ellipsoidal reflectors. I. Acoustic fields.
    Bailey MR; Blackstock DT; Cleveland RO; Crum LA
    J Acoust Soc Am; 1998 Oct; 104(4):2517-24. PubMed ID: 10491712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Suppression of large intraluminal bubble expansion in shock wave lithotripsy without compromising stone comminution: methodology and in vitro experiments.
    Zhong P; Zhou Y
    J Acoust Soc Am; 2001 Dec; 110(6):3283-91. PubMed ID: 11785829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Suppression of large intraluminal bubble expansion in shock wave lithotripsy without compromising stone comminution: refinement of reflector geometry.
    Zhou Y; Zhong P
    J Acoust Soc Am; 2003 Jan; 113(1):586-97. PubMed ID: 12558294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduction of bubble cavitation by modifying the diffraction wave from a lithotripter aperture.
    Zhou Y
    J Endourol; 2012 Aug; 26(8):1075-84. PubMed ID: 22332839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of electrohydraulic lithotripters with rigid and pressure-release ellipsoidal reflectors. II. Cavitation fields.
    Bailey MR; Blackstock DT; Cleveland RO; Crum LA
    J Acoust Soc Am; 1999 Aug; 106(2):1149-60. PubMed ID: 10462818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prefocal alignment improves stone comminution in shockwave lithotripsy.
    Sokolov DL; Bailey MR; Crum LA; Blomgren PM; Connors BA; Evan AP
    J Endourol; 2002 Dec; 16(10):709-15. PubMed ID: 12542872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Treatment time reduction using tandem shockwaves for lithotripsy: an in vivo study.
    Fernández F; Fernández G; Loske AM
    J Endourol; 2009 Aug; 23(8):1247-53. PubMed ID: 19580352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The Dornier lithotripter in a comparison. Measuring shockwave fields and fragmentation effects].
    Müller M
    Biomed Tech (Berl); 1990 Nov; 35(11):250-62. PubMed ID: 2073536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of fat, muscle, and kidney on stone fragmentation by shockwave lithotripsy: an in vitro study.
    Hammad FT; Al Najjar A
    J Endourol; 2010 Feb; 24(2):289-92. PubMed ID: 20078241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of a modified acoustic lens for electromagnetic shock wave lithotripters in a swine model.
    Mancini JG; Neisius A; Smith N; Sankin G; Astroza GM; Lipkin ME; Simmons WN; Preminger GM; Zhong P
    J Urol; 2013 Sep; 190(3):1096-101. PubMed ID: 23485509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Out-of-focus shockwaves: a new tissue-protecting therapy?
    Loske AM; Gutierrez J; Di Grazia E; Fernández F
    Arch Ital Urol Androl; 2004 Dec; 76(4):159-62. PubMed ID: 15693429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anesthesia for extracorporeal shockwave lithotripsy: Teikyo University Hospital experience using the third generation lithotripter.
    Kurihara K; Kamiyama Y; Saito K; Yasuda M; Ide H; Muto S; Okada H; Horie S
    Hinyokika Kiyo; 2007 Aug; 53(8):545-9. PubMed ID: 17874545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of reflector geometry on the acoustic field and bubble dynamics produced by an electrohydraulic shock wave lithotripter.
    Zhou Y; Zhong P
    J Acoust Soc Am; 2006 Jun; 119(6):3625-36. PubMed ID: 16838506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.