BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

564 related articles for article (PubMed ID: 15006552)

  • 1. Effects of enhancing mitochondrial oxidative phosphorylation with reducing equivalents and ubiquinone on 1-methyl-4-phenylpyridinium toxicity and complex I-IV damage in neuroblastoma cells.
    Mazzio EA; Soliman KF
    Biochem Pharmacol; 2004 Mar; 67(6):1167-84. PubMed ID: 15006552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of oxidative stress, impaired glycolysis and mitochondrial respiratory redox failure in the cytotoxic effects of 6-hydroxydopamine in vitro.
    Mazzio EA; Reams RR; Soliman KF
    Brain Res; 2004 Apr; 1004(1-2):29-44. PubMed ID: 15033417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. D-(+)-glucose rescue against 1-methyl-4-phenylpyridinium toxicity through anaerobic glycolysis in neuroblastoma cells.
    Mazzio E; Soliman KF
    Brain Res; 2003 Feb; 962(1-2):48-60. PubMed ID: 12543455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MPP(+)-induced neurotoxicity in mouse is age-dependent: evidenced by the selective inhibition of complexes of electron transport.
    Desai VG; Feuers RJ; Hart RW; Ali SF
    Brain Res; 1996 Apr; 715(1-2):1-8. PubMed ID: 8739616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pro-oxidant mitochondrial matrix-targeted ubiquinone MitoQ10 acts as anti-oxidant at retarded electron transport or proton pumping within Complex I.
    Plecitá-Hlavatá L; Jezek J; Jezek P
    Int J Biochem Cell Biol; 2009; 41(8-9):1697-707. PubMed ID: 19433311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MPP(+) causes inhibition of cellular energy supply in cerebellar granule cells.
    González-Polo RA; Soler G; Alonso JC; Rodríguez-Martín A; Fuentes JM
    Neurotoxicology; 2003 Mar; 24(2):219-25. PubMed ID: 12606294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oral administration of coenzyme Q(10) prevents cytochrome c release from mitochondria induced by 1-methyl-4-phenylpyridinium ion in mouse brain synaptosomes.
    Mitsumoto Y; Kobayashi S; Matsushima H; Muroyama A; Yoshimura I
    Neurosci Lett; 2009 Sep; 463(1):22-5. PubMed ID: 19638300
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromium(VI) interaction with plant and animal mitochondrial bioenergetics: a comparative study.
    Fernandes MA; Santos MS; Alpoim MC; Madeira VM; Vicente JA
    J Biochem Mol Toxicol; 2002; 16(2):53-63. PubMed ID: 11979422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dopaminergic neurotoxicity of 1-methyl-4-phenylpyridinium analogs in cultured neurons: relationship to the dopamine uptake system and inhibition of mitochondrial respiration.
    Saporito MS; Heikkila RE; Youngster SK; Nicklas WJ; Geller HM
    J Pharmacol Exp Ther; 1992 Mar; 260(3):1400-9. PubMed ID: 1312170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impaired glutamate clearance as a consequence of energy failure caused by MPP(+) in astrocytic cultures.
    Di Monte DA; Tokar I; Langston JW
    Toxicol Appl Pharmacol; 1999 Aug; 158(3):296-302. PubMed ID: 10438663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biphasic mechanism of the toxicity induced by 1-methyl-4-phenylpyridinium ion (MPP+) as revealed by dynamic changes in glucose metabolism in rat brain slices.
    Maruoka N; Murata T; Omata N; Takashima Y; Fujibayashi Y; Wada Y
    Neurotoxicology; 2007 May; 28(3):672-8. PubMed ID: 17391768
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of dopaminergic neurotoxin MPTP/MPP+ on coenzyme Q content.
    Dhanasekaran M; Karuppagounder SS; Uthayathas S; Wold LE; Parameshwaran K; Jayachandra Babu R; Suppiramaniam V; Brown-Borg H
    Life Sci; 2008 Jul; 83(3-4):92-5. PubMed ID: 18565546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of mitochondrial dysfunction in neurotoxicity of MPP+: partial protection of PC12 cells by acetyl-L-carnitine.
    Virmani A; Gaetani F; Binienda Z; Xu A; Duhart H; Ali SF
    Ann N Y Acad Sci; 2004 Oct; 1025():267-73. PubMed ID: 15542726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iptakalim ameliorates MPP+-induced astrocyte mitochondrial dysfunction by increasing mitochondrial complex activity besides opening mitoK(ATP) channels.
    Zhang S; Ding JH; Zhou F; Wang ZY; Zhou XQ; Hu G
    J Neurosci Res; 2009 Apr; 87(5):1230-9. PubMed ID: 19006086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of resveratrol on the rat brain respiratory chain.
    Zini R; Morin C; Bertelli A; Bertelli AA; Tillement JP
    Drugs Exp Clin Res; 1999; 25(2-3):87-97. PubMed ID: 10370869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acetyl-L-carnitine cytoprotection against 1-methyl-4-phenylpyridinium toxicity in neuroblastoma cells.
    Mazzio E; Yoon KJ; Soliman KF
    Biochem Pharmacol; 2003 Jul; 66(2):297-306. PubMed ID: 12826272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High doses of nicotinamide prevent oxidative mitochondrial dysfunction in a cellular model and improve motor deficit in a Drosophila model of Parkinson's disease.
    Jia H; Li X; Gao H; Feng Z; Li X; Zhao L; Jia X; Zhang H; Liu J
    J Neurosci Res; 2008 Jul; 86(9):2083-90. PubMed ID: 18381761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MPP(+) increases the vulnerability to oxidative stress rather than directly mediating oxidative damage in human neuroblastoma cells.
    Lee HS; Park CW; Kim YS
    Exp Neurol; 2000 Sep; 165(1):164-71. PubMed ID: 10964495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of mitochondrial respiration in permeabilized murine neuroblastoma (N-2alpha) cells, a simple and rapid in situ assay to investigate mitochondrial toxins.
    Steyn SJ; Pieterse DJ; Mienie LJ; Van der Schyf CJ
    J Biochem Biophys Methods; 2005 Jan; 62(1):25-40. PubMed ID: 15656941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial medicine--molecular pathology of defective oxidative phosphorylation.
    Fosslien E
    Ann Clin Lab Sci; 2001 Jan; 31(1):25-67. PubMed ID: 11314862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.