These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 15006814)
1. Reappraisal of the regulation of lactococcal L-lactate dehydrogenase. van Niel EW; Palmfeldt J; Martin R; Paese M; Hahn-Hägerdal B Appl Environ Microbiol; 2004 Mar; 70(3):1843-6. PubMed ID: 15006814 [TBL] [Abstract][Full Text] [Related]
3. Control of the shift from homolactic acid to mixed-acid fermentation in Lactococcus lactis: predominant role of the NADH/NAD+ ratio. Garrigues C; Loubiere P; Lindley ND; Cocaign-Bousquet M J Bacteriol; 1997 Sep; 179(17):5282-7. PubMed ID: 9286977 [TBL] [Abstract][Full Text] [Related]
4. Metabolic characterization of Lactococcus lactis deficient in lactate dehydrogenase using in vivo 13C-NMR. Neves AR; Ramos A; Shearman C; Gasson MJ; Almeida JS; Santos H Eur J Biochem; 2000 Jun; 267(12):3859-68. PubMed ID: 10849005 [TBL] [Abstract][Full Text] [Related]
6. Is the glycolytic flux in Lactococcus lactis primarily controlled by the redox charge? Kinetics of NAD(+) and NADH pools determined in vivo by 13C NMR. Neves AR; Ventura R; Mansour N; Shearman C; Gasson MJ; Maycock C; Ramos A; Santos H J Biol Chem; 2002 Aug; 277(31):28088-98. PubMed ID: 12011086 [TBL] [Abstract][Full Text] [Related]
7. Catabolism of mannitol in Lactococcus lactis MG1363 and a mutant defective in lactate dehydrogenase. Neves AR; Ramos A; Shearman C; Gasson MJ; Santos H Microbiology (Reading); 2002 Nov; 148(Pt 11):3467-3476. PubMed ID: 12427938 [TBL] [Abstract][Full Text] [Related]
8. Kinetics of activation of L-lactate dehydrogenase from Streptococcus lactis by fructose 1,6-bisphosphate. Hardman MJ; Crow VL; Cruickshank DS; Pritchard GG Eur J Biochem; 1985 Jan; 146(1):179-83. PubMed ID: 3917918 [TBL] [Abstract][Full Text] [Related]
9. Inhibition kinetics of catabolic dehydrogenases by elevated moieties of ATP and ADP--implication for a new regulation mechanism in Lactococcus lactis. Cao R; Zeidan AA; Rådström P; van Niel EW FEBS J; 2010 Apr; 277(8):1843-52. PubMed ID: 20193044 [TBL] [Abstract][Full Text] [Related]
10. Cloning and sequence analysis of the gene encoding L-lactate dehydrogenase from Lactococcus lactis: evolutionary relationships between 21 different LDH enzymes. Griffin HG; Swindell SR; Gasson MJ Gene; 1992 Dec; 122(1):193-7. PubMed ID: 1452029 [TBL] [Abstract][Full Text] [Related]
11. Glucose metabolism and regulation of glycolysis in Lactococcus lactis strains with decreased lactate dehydrogenase activity. Garrigues C; Goupil-Feuillerat N; Cocaign-Bousquet M; Renault P; Lindley ND; Loubiere P Metab Eng; 2001 Jul; 3(3):211-7. PubMed ID: 11461143 [TBL] [Abstract][Full Text] [Related]
12. Galactose fermentation by Streptococcus lactis and Streptococcus cremoris: pathways, products, and regulation. Thomas TD; Turner KW; Crow VL J Bacteriol; 1980 Nov; 144(2):672-82. PubMed ID: 6776093 [TBL] [Abstract][Full Text] [Related]
13. Crystal structure of the MJ0490 gene product of the hyperthermophilic archaebacterium Methanococcus jannaschii, a novel member of the lactate/malate family of dehydrogenases. Lee BI; Chang C; Cho SJ; Eom SH; Kim KK; Yu YG; Suh SW J Mol Biol; 2001 Apr; 307(5):1351-62. PubMed ID: 11292347 [TBL] [Abstract][Full Text] [Related]
14. Regulation of pyruvate metabolism in Lactococcus lactis depends on the imbalance between catabolism and anabolism. Garrigues C; Mercade M; Cocaign-Bousquet M; Lindley ND; Loubiere P Biotechnol Bioeng; 2001 Jul; 74(2):108-15. PubMed ID: 11369999 [TBL] [Abstract][Full Text] [Related]
15. Elevated enzyme release from lactococcal starter cultures on exposure to the lantibiotic lacticin 481, produced by Lactococcus lactis DPC5552. O'Sullivan L; Morgan SM; Ross RP; Hill C J Dairy Sci; 2002 Sep; 85(9):2130-40. PubMed ID: 12362444 [TBL] [Abstract][Full Text] [Related]
16. The lactate dehydrogenases encoded by the ldh and ldhB genes in Lactococcus lactis exhibit distinct regulation and catalytic properties - comparative modeling to probe the molecular basis. Gaspar P; Neves AR; Shearman CA; Gasson MJ; Baptista AM; Turner DL; Soares CM; Santos H FEBS J; 2007 Nov; 274(22):5924-36. PubMed ID: 17944947 [TBL] [Abstract][Full Text] [Related]
17. Effect of pyruvate kinase overproduction on glucose metabolism of Lactococcus lactis. Ramos A; Neves AR; Ventura R; Maycock C; López P; Santos H Microbiology (Reading); 2004 Apr; 150(Pt 4):1103-1111. PubMed ID: 15073320 [TBL] [Abstract][Full Text] [Related]
18. Lactate dehydrogenase has no control on lactate production but has a strong negative control on formate production in Lactococcus lactis. Andersen HW; Pedersen MB; Hammer K; Jensen PR Eur J Biochem; 2001 Dec; 268(24):6379-89. PubMed ID: 11737192 [TBL] [Abstract][Full Text] [Related]
19. Isolation and properties of Lactococcus lactis subsp. lactis biovar diacetylactis CNRZ 483 mutants producing diacetyl and acetoin from glucose. Boumerdassi H; Monnet C; Desmazeaud M; Corrieu G Appl Environ Microbiol; 1997 Jun; 63(6):2293-9. PubMed ID: 9172349 [TBL] [Abstract][Full Text] [Related]
20. The Simple and Unique Allosteric Machinery of Thermus caldophilus Lactate Dehydrogenase : Structure-Function Relationship in Bacterial Allosteric LDHs. Taguchi H Adv Exp Med Biol; 2017; 925():117-145. PubMed ID: 27815924 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]