These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 15007430)
1. An enzyme-immobilization method for integration of biofunctions on a microchip using a water-soluble amphiphilic phospholipid polymer having a reacting group. Sakai-Kato K; Kato M; Ishihara K; Toyo'oka T Lab Chip; 2004 Feb; 4(1):4-6. PubMed ID: 15007430 [TBL] [Abstract][Full Text] [Related]
2. Bioconjugated phospholipid polymer biointerface for enzyme-linked immunosorbent assay. Nishizawa K; Konno T; Takai M; Ishihara K Biomacromolecules; 2008 Jan; 9(1):403-7. PubMed ID: 18092759 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of 2-methacryloyloxyethyl phosphorylcholine polymeric nanoparticle for immunoassay of C-reactive protein detection. Park J; Kurosawa S; Watanabe J; Ishihara K Anal Chem; 2004 May; 76(9):2649-55. PubMed ID: 15117211 [TBL] [Abstract][Full Text] [Related]
4. A bioconjugated phospholipid polymer biointerface with nanometer-scaled structure for highly sensitive immunoassays. Nishizawa K; Takai M; Ishihara K Methods Mol Biol; 2011; 751():491-502. PubMed ID: 21674351 [TBL] [Abstract][Full Text] [Related]
5. Antibody immobilization to phospholipid polymer layer on gold substrate of quartz crystal microbalance immunosensor. Park J; Kurosawa S; Takai M; Ishihara K Colloids Surf B Biointerfaces; 2007 Apr; 55(2):164-72. PubMed ID: 17207978 [TBL] [Abstract][Full Text] [Related]
6. Redox phospholipid polymer microparticles as doubly functional polymer support for immobilization of enzyme oxidase. Lin X; Konno T; Takai M; Ishihara K Colloids Surf B Biointerfaces; 2013 Feb; 102():857-63. PubMed ID: 23107964 [TBL] [Abstract][Full Text] [Related]
7. Why do phospholipid polymers reduce protein adsorption? Ishihara K; Nomura H; Mihara T; Kurita K; Iwasaki Y; Nakabayashi N J Biomed Mater Res; 1998 Feb; 39(2):323-30. PubMed ID: 9457564 [TBL] [Abstract][Full Text] [Related]
8. Movement of a Quantum Dot Covered with Cytocompatible and pH-Responsible Phospholipid Polymer Chains under a Cellular Environment. Liu Y; Oda H; Inoue Y; Ishihara K Biomacromolecules; 2016 Dec; 17(12):3986-3994. PubMed ID: 27791358 [TBL] [Abstract][Full Text] [Related]
9. Conjugation of enzymes on polymer nanoparticles covered with phosphorylcholine groups. Konno T; Watanabe J; Ishihara K Biomacromolecules; 2004; 5(2):342-7. PubMed ID: 15002993 [TBL] [Abstract][Full Text] [Related]
10. Stabilization of phospholipid polymer surface with three-dimensional nanometer-scaled structure for highly sensitive immunoassay. Nishizawa K; Takai M; Ishihara K Colloids Surf B Biointerfaces; 2010 Jun; 77(2):263-9. PubMed ID: 20197230 [TBL] [Abstract][Full Text] [Related]
11. Effects of phospholipid adsorption on nonthrombogenicity of polymer with phospholipid polar group. Ishihara K; Oshida H; Endo Y; Watanabe A; Ueda T; Nakabayashi N J Biomed Mater Res; 1993 Oct; 27(10):1309-14. PubMed ID: 8245045 [TBL] [Abstract][Full Text] [Related]
12. Solubilization of poorly water-soluble compounds using amphiphilic phospholipid polymers with different molecular architectures. Mu M; Konno T; Inoue Y; Ishihara K Colloids Surf B Biointerfaces; 2017 Oct; 158():249-256. PubMed ID: 28700969 [TBL] [Abstract][Full Text] [Related]
13. Reduced protein adsorption on novel phospholipid polymers. Ishihara K; Iwasaki Y J Biomater Appl; 1998 Oct; 13(2):111-27. PubMed ID: 9777463 [TBL] [Abstract][Full Text] [Related]
14. Polymer nanoparticles covered with phosphorylcholine groups and immobilized with antibody for high-affinity separation of proteins. Goto Y; Matsuno R; Konno T; Takai M; Ishihara K Biomacromolecules; 2008 Mar; 9(3):828-33. PubMed ID: 18247529 [TBL] [Abstract][Full Text] [Related]
15. Hemocompatibility of human whole blood on polymers with a phospholipid polar group and its mechanism. Ishihara K; Oshida H; Endo Y; Ueda T; Watanabe A; Nakabayashi N J Biomed Mater Res; 1992 Dec; 26(12):1543-52. PubMed ID: 1484061 [TBL] [Abstract][Full Text] [Related]
16. Water-soluble and amphiphilic phospholipid copolymers having 2-methacryloyloxyethyl phosphorylcholine units for the solubilization of bioactive compounds. Ishihara K; Mu M; Konno T J Biomater Sci Polym Ed; 2018; 29(7-9):844-862. PubMed ID: 28891422 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of the durability and antiadhesive action of 2-methacryloyloxyethyl phosphorylcholine grafting on an acrylic resin denture base material. Takahashi N; Iwasa F; Inoue Y; Morisaki H; Ishihara K; Baba K J Prosthet Dent; 2014 Aug; 112(2):194-203. PubMed ID: 24461942 [TBL] [Abstract][Full Text] [Related]
18. Creation of an on-chip enzyme reactor by encapsulating trypsin in sol-gel on a plastic microchip. Sakai-Kato K; Kato M; Toyo'oka T Anal Chem; 2003 Feb; 75(3):388-93. PubMed ID: 12585462 [TBL] [Abstract][Full Text] [Related]
19. Effects of inner polarity and viscosity of amphiphilic phospholipid polymer aggregates on the solubility enhancement of poorly water-soluble drugs. Yoshie K; Yada S; Ando S; Ishihara K Colloids Surf B Biointerfaces; 2020 Nov; 195():111215. PubMed ID: 32652398 [TBL] [Abstract][Full Text] [Related]
20. Spontaneously forming hydrogel from water-soluble random- and block-type phospholipid polymers. Kimura M; Fukumoto K; Watanabe J; Takai M; Ishihara K Biomaterials; 2005 Dec; 26(34):6853-62. PubMed ID: 15978662 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]