These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 15007460)

  • 21. Monitoring erythrocytes in a microchip channel that narrows uniformly: towards an improved microfluidic-based mimic of the microcirculation.
    Price AK; Martin RS; Spence DM
    J Chromatogr A; 2006 Apr; 1111(2):220-7. PubMed ID: 16569581
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Soft inertial microfluidics for high throughput separation of bacteria from human blood cells.
    Wu Z; Willing B; Bjerketorp J; Jansson JK; Hjort K
    Lab Chip; 2009 May; 9(9):1193-9. PubMed ID: 19370236
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Design, fabrication and characterization of monolithic embedded parylene microchannels in silicon substrate.
    Chen PJ; Shih CY; Tai YC
    Lab Chip; 2006 Jun; 6(6):803-10. PubMed ID: 16738734
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dielectrophoresis microsystem with integrated flow cytometers for on-line monitoring of sorting efficiency.
    Wang Z; Hansen O; Petersen PK; Rogeberg A; Kutter JP; Bang DD; Wolff A
    Electrophoresis; 2006 Dec; 27(24):5081-92. PubMed ID: 17161009
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microfabricated system for parallel single-cell capillary electrophoresis.
    Munce NR; Li J; Herman PR; Lilge L
    Anal Chem; 2004 Sep; 76(17):4983-9. PubMed ID: 15373432
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Membrane-activated microfluidic rotary devices for pumping and mixing.
    Tseng HY; Wang CH; Lin WY; Lee GB
    Biomed Microdevices; 2007 Aug; 9(4):545-54. PubMed ID: 17505888
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Single cell detection using a glass-based optofluidic device fabricated by femtosecond laser pulses.
    Kim M; Hwang DJ; Jeon H; Hiromatsu K; Grigoropoulos CP
    Lab Chip; 2009 Jan; 9(2):311-8. PubMed ID: 19107290
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An integrated cell culture lab on a chip: modular microdevices for cultivation of mammalian cells and delivery into microfluidic microdroplets.
    Hufnagel H; Huebner A; Gülch C; Güse K; Abell C; Hollfelder F
    Lab Chip; 2009 Jun; 9(11):1576-82. PubMed ID: 19458865
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Impedimetric and optical interrogation of single cells in a microfluidic device for real-time viability and chemical response assessment.
    James CD; Reuel N; Lee ES; Davalos RV; Mani SS; Carroll-Portillo A; Rebeil R; Martino A; Apblett CA
    Biosens Bioelectron; 2008 Jan; 23(6):845-51. PubMed ID: 17933506
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantitative and qualitative analysis of a microfluidic DNA extraction system using a nanoporous AlO(x) membrane.
    Kim J; Gale BK
    Lab Chip; 2008 Sep; 8(9):1516-23. PubMed ID: 18818807
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Isolation of plasma from whole blood using planar microfilters for lab-on-a-chip applications.
    Crowley TA; Pizziconi V
    Lab Chip; 2005 Sep; 5(9):922-9. PubMed ID: 16100575
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cell research with physically modified microfluidic channels: a review.
    Kim SM; Lee SH; Suh KY
    Lab Chip; 2008 Jul; 8(7):1015-23. PubMed ID: 18584072
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification, characterization and manipulation of Babesia-bovis-infected red blood cells using microfluidics technology.
    Nascimento E; Silva T; Oliva A
    Parassitologia; 2007 May; 49 Suppl 1():45-52. PubMed ID: 17691607
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Micro/nanoscale well and channel fabrication on organic polymer substrates via a combination of photochemical and alkaline hydrolysis etchings.
    Yang P; Zhang X; Xie J; Chen J; Yang W
    Biomacromolecules; 2006 Oct; 7(10):2770-5. PubMed ID: 17025351
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The potential of autofluorescence for the detection of single living cells for label-free cell sorting in microfluidic systems.
    Emmelkamp J; Wolbers F; Andersson H; Dacosta RS; Wilson BC; Vermes I; van den Berg A
    Electrophoresis; 2004 Nov; 25(21-22):3740-5. PubMed ID: 15565697
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cell loss in integrated microfluidic device.
    Zhu L; Peh XL; Ji HM; Teo CY; Feng HH; Liu WT
    Biomed Microdevices; 2007 Oct; 9(5):745-50. PubMed ID: 17541747
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Simple and rapid methods for the fabrication of polymeric and glass chips for using in analytical chemistry.
    Sorouraddin MH; Amjadi M; Safi-Shalamzari M
    Anal Chim Acta; 2007 Apr; 589(1):84-8. PubMed ID: 17397657
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Autonomous microfluidic sample preparation system for protein profile-based detection of aerosolized bacterial cells and spores.
    Stachowiak JC; Shugard EE; Mosier BP; Renzi RF; Caton PF; Ferko SM; Van de Vreugde JL; Yee DD; Haroldsen BL; VanderNoot VA
    Anal Chem; 2007 Aug; 79(15):5763-70. PubMed ID: 17591754
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Three dimensional electrode array for cell lysis via electroporation.
    Lu KY; Wo AM; Lo YJ; Chen KC; Lin CM; Yang CR
    Biosens Bioelectron; 2006 Oct; 22(4):568-74. PubMed ID: 16997544
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of a microfluidic dispensing system for localised stimulation of cellular networks.
    Kraus T; Verpoorte E; Linder V; Franks W; Hierlemann A; Heer F; Hafizovic S; Fujii T; de Rooij NF; Koster S
    Lab Chip; 2006 Feb; 6(2):218-29. PubMed ID: 16450031
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.