BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

743 related articles for article (PubMed ID: 15007587)

  • 1. The role of the primary somatosensory cortex in an auditorily paced finger tapping task.
    Pollok B; Müller K; Aschersleben G; Schnitzler A; Prinz W
    Exp Brain Res; 2004 May; 156(1):111-7. PubMed ID: 15007587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cortical activations associated with auditorily paced finger tapping.
    Pollok B; Müller K; Aschersleben G; Schmitz F; Schnitzler A; Prinz W
    Neuroreport; 2003 Feb; 14(2):247-50. PubMed ID: 12598739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuromagnetic correlates of sensorimotor synchronization.
    Müller K; Schmitz F; Schnitzler A; Freund HJ; Aschersleben G; Prinz W
    J Cogn Neurosci; 2000 Jul; 12(4):546-55. PubMed ID: 10936909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A functional MRI study of motor dysfunction in Friedreich's ataxia.
    Akhlaghi H; Corben L; Georgiou-Karistianis N; Bradshaw J; Delatycki MB; Storey E; Egan GF
    Brain Res; 2012 Aug; 1471():138-54. PubMed ID: 22771856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bilateral neuromagnetic activation of human primary sensorimotor cortex in preparation and execution of unilateral voluntary finger movements.
    Babiloni C; Carducci F; Pizzella V; Indovina I; Romani GL; Rossini PM; Babiloni F
    Brain Res; 1999 May; 827(1-2):234-6. PubMed ID: 10320716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inter- versus intramodal integration in sensorimotor synchronization: a combined behavioral and magnetoencephalographic study.
    Müller K; Aschersleben G; Schmitz F; Schnitzler A; Freund HJ; Prinz W
    Exp Brain Res; 2008 Feb; 185(2):309-18. PubMed ID: 17932661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatiotemporal mapping of cortical activity accompanying voluntary movements using an event-related beamforming approach.
    Cheyne D; Bakhtazad L; Gaetz W
    Hum Brain Mapp; 2006 Mar; 27(3):213-29. PubMed ID: 16037985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cortical activations during paced finger-tapping applying visual and auditory pacing stimuli.
    Jäncke L; Loose R; Lutz K; Specht K; Shah NJ
    Brain Res Cogn Brain Res; 2000 Sep; 10(1-2):51-66. PubMed ID: 10978692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Centrifugal regulation of human cortical responses to a task-relevant somatosensory signal triggering voluntary movement.
    Kida T; Wasaka T; Inui K; Akatsuka K; Nakata H; Kakigi R
    Neuroimage; 2006 Sep; 32(3):1355-64. PubMed ID: 16806987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Centrifugal regulation of task-relevant somatosensory signals to trigger a voluntary movement.
    Kida T; Wasaka T; Nakata H; Kakigi R
    Exp Brain Res; 2006 Mar; 169(3):289-301. PubMed ID: 16307265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequential activation of premotor, primary somatosensory and primary motor areas in humans during cued finger movements.
    Sun H; Blakely TM; Darvas F; Wander JD; Johnson LA; Su DK; Miller KJ; Fetz EE; Ojemann JG
    Clin Neurophysiol; 2015 Nov; 126(11):2150-61. PubMed ID: 25680948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The cerebral oscillatory network associated with auditorily paced finger movements.
    Pollok B; Gross J; Müller K; Aschersleben G; Schnitzler A
    Neuroimage; 2005 Feb; 24(3):646-55. PubMed ID: 15652300
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MEG responses during rhythmic finger tapping in humans to phasic stimulation and their interpretation based on neural mechanisms.
    Yoshino K; Takagi K; Nomura T; Sato S; Tonoike M
    Biol Cybern; 2002 Jun; 86(6):483-96. PubMed ID: 12111276
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tapping movements according to regular and irregular visual timing signals investigated with fMRI.
    Lutz K; Specht K; Shah NJ; Jäncke L
    Neuroreport; 2000 Apr; 11(6):1301-6. PubMed ID: 10817611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time, frequency and volumetric differences of high-frequency neuromagnetic oscillation between left and right somatosensory cortices.
    Kotecha R; Xiang J; Wang Y; Huo X; Hemasilpin N; Fujiwara H; Rose D; deGrauw T
    Int J Psychophysiol; 2009 May; 72(2):102-10. PubMed ID: 19041674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of the number of pins and inter-pin distance on somatosensory evoked magnetic fields following mechanical tactile stimulation.
    Onishi H; Sugawara K; Yamashiro K; Sato D; Suzuki M; Kirimoto H; Tamaki H; Murakami H; Kameyama S
    Brain Res; 2013 Oct; 1535():78-88. PubMed ID: 24001589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bimanual coordination: neuromagnetic and behavioral data.
    Pollok B; Müller K; Aschersleben G; Schnitzler A; Prinz W
    Neuroreport; 2004 Mar; 15(3):449-52. PubMed ID: 15094501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low frequency rTMS effects on sensorimotor synchronization.
    Doumas M; Praamstra P; Wing AM
    Exp Brain Res; 2005 Nov; 167(2):238-45. PubMed ID: 16078033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional coupling and regional activation of human cortical motor areas during simple, internally paced and externally paced finger movements.
    Gerloff C; Richard J; Hadley J; Schulman AE; Honda M; Hallett M
    Brain; 1998 Aug; 121 ( Pt 8)():1513-31. PubMed ID: 9712013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Asymmetry of interhemispheric interaction in left-handed subjects.
    Pollok B; Gross J; Schnitzler A
    Exp Brain Res; 2006 Nov; 175(2):268-75. PubMed ID: 16896985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.