These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 15007676)

  • 1. Slow dynamics of embedded fluid in mesoscopic confining systems as probed by NMR relaxometry.
    Levitz P; Korb JP; Petit D
    Eur Phys J E Soft Matter; 2003 Sep; 12(1):29-33. PubMed ID: 15007676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Slow dynamics in colloidal glasses and porous media as probed by NMR relaxometry: assessment of solvent levy statistics in the strong adsorption regime.
    Levitz PE
    Magn Reson Imaging; 2003; 21(3-4):177-84. PubMed ID: 12850705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Confined dynamics, forms and transitions in colloidal systems: from clay to DNA.
    Levitz PE
    Magn Reson Imaging; 2005 Feb; 23(2):147-52. PubMed ID: 15833605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Field-cycling NMR relaxometry of molecules undergoing Lévy walks at the surface of fine particles and porous glass.
    Zavada T; Stapf S; Beginn U; Kimmich R
    Magn Reson Imaging; 1998; 16(5-6):711-3. PubMed ID: 9803947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flow-enhanced molecular reorientations and interfacial slip probed by field-cycling NMR relaxometry in microscopic pores.
    Mattea C; Kimmich R
    Phys Rev Lett; 2005 Jan; 94(2):024502. PubMed ID: 15698179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigations of polymer dynamics in nanoporous media by field cycling NMR relaxometry and the dipolar correlation effect.
    Kausik R; Fatkullin N; Hüsing N; Kimmich R
    Magn Reson Imaging; 2007 May; 25(4):489-92. PubMed ID: 17466770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cooperative polymer dynamics under nanoscopic pore confinements probed by field-cycling NMR relaxometry.
    Fatkullin N; Kausik R; Kimmich R
    J Chem Phys; 2007 Mar; 126(9):094904. PubMed ID: 17362124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface fractals probed by adsorbate spin-lattice relaxation dispersion.
    Zavada T; Kimmich R
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 May; 59(5 Pt B):5848-54. PubMed ID: 11969565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water dynamics in ionomer membranes by field-cycling NMR relaxometry.
    Perrin JC; Lyonnard S; Guillermo A; Levitz P
    J Phys Chem B; 2006 Mar; 110(11):5439-44. PubMed ID: 16539481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Field-cycling NMR relaxometry of liquids confined in porous glass: evidence for Levy-walks.
    Stapf S; Kimmich R; Seitter RO
    Magn Reson Imaging; 1996; 14(7-8):841-6. PubMed ID: 8970092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polymer dynamics under nanoscopic constraints: the "corset effect" as revealed by NMR relaxometry and diffusometry.
    Fatkullin N; Fischer E; Mattea C; Beginn U; Kimmich R
    Chemphyschem; 2004 Jun; 5(6):884-94. PubMed ID: 15253315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Model for the interpretation of nuclear magnetic resonance relaxometry of hydrated porous silicate materials.
    Faux DA; Cachia SH; McDonald PJ; Bhatt JS; Howlett NC; Churakov SV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):032311. PubMed ID: 25871114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface effects on liquid crystals constrained in nanoscaled pores investigated by field cycling NMR relaxometry and Monte Carlo simulations.
    Grinberg F
    Magn Reson Imaging; 2007 May; 25(4):485-8. PubMed ID: 17466769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water dynamics in ionomer membranes by field-cycling NMR relaxometry.
    Perrin JC; Lyonnard S; Guillermo A; Levitz P
    Magn Reson Imaging; 2007 May; 25(4):501-4. PubMed ID: 17466773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Onset of anomalous diffusion in colloids confined to quasimonolayers.
    Bleibel J; Domínguez A; Oettel M
    Phys Rev E; 2017 Mar; 95(3-1):032604. PubMed ID: 28415209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Confined diffusion in periodic porous nanostructures.
    Raccis R; Nikoubashman A; Retsch M; Jonas U; Koynov K; Butt HJ; Likos CN; Fytas G
    ACS Nano; 2011 Jun; 5(6):4607-16. PubMed ID: 21548605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Field-cycling NMR relaxometry of a liquid crystal above in mesoscopic confinement.
    Sebastião PJ; Sousa D; Ribeiro AC; Vilfan M; Lahajnar G; Seliger J; Zumer S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 1):061702. PubMed ID: 16485959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Water dynamics in different biochar fractions.
    Conte P; Nestle N
    Magn Reson Chem; 2015 Sep; 53(9):726-34. PubMed ID: 25594163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of string-like cooperative atomic motion on surface diffusion in the (110) interfacial region of crystalline Ni.
    Zhang H; Yang Y; Douglas JF
    J Chem Phys; 2015 Feb; 142(8):084704. PubMed ID: 25725748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.