These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 15009091)
1. Down-regulation of nuclear protein ICBP90 by p53/p21Cip1/WAF1-dependent DNA-damage checkpoint signals contributes to cell cycle arrest at G1/S transition. Arima Y; Hirota T; Bronner C; Mousli M; Fujiwara T; Niwa S; Ishikawa H; Saya H Genes Cells; 2004 Feb; 9(2):131-42. PubMed ID: 15009091 [TBL] [Abstract][Full Text] [Related]
2. Cell cycle arrest through indirect transcriptional repression by p53: I have a DREAM. Engeland K Cell Death Differ; 2018 Jan; 25(1):114-132. PubMed ID: 29125603 [TBL] [Abstract][Full Text] [Related]
3. Cyclin-dependent kinase inhibitor 1 plays a more prominent role than activating transcription factor 4 or the p53 tumour suppressor in thapsigargin-induced G1 arrest. van Zyl E; Peneycad C; Perehiniak E; McKay BC PeerJ; 2023; 11():e16683. PubMed ID: 38130926 [TBL] [Abstract][Full Text] [Related]
4. Loss of p53 suppresses replication-stress-induced DNA breakage in G1/S checkpoint deficient cells. Benedict B; van Harn T; Dekker M; Hermsen S; Kucukosmanoglu A; Pieters W; Delzenne-Goette E; Dorsman JC; Petermann E; Foijer F; Te Riele H Elife; 2018 Oct; 7():. PubMed ID: 30322449 [TBL] [Abstract][Full Text] [Related]
5. Depletion of the poly(C)-binding proteins alphaCP1 and alphaCP2 from K562 cells leads to p53-independent induction of cyclin-dependent kinase inhibitor (CDKN1A) and G1 arrest. Waggoner SA; Johannes GJ; Liebhaber SA J Biol Chem; 2009 Apr; 284(14):9039-49. PubMed ID: 19211566 [TBL] [Abstract][Full Text] [Related]
6. PDCD4 controls the G1/S-phase transition in a telomerase-immortalized epithelial cell line and affects the expression level and translation of multiple mRNAs. Haas A; Nilges BS; Leidel SA; Klempnauer KH Sci Rep; 2020 Feb; 10(1):2758. PubMed ID: 32066800 [TBL] [Abstract][Full Text] [Related]
7. Hip2 ubiquitin-conjugating enzyme has a role in UV-induced G1/S arrest and re-entry. Hong NH; Tak YJ; Rhim H; Kang S Genes Genomics; 2019 Feb; 41(2):159-166. PubMed ID: 30264212 [TBL] [Abstract][Full Text] [Related]
8. Cryptolepine, a Plant Alkaloid, Inhibits the Growth of Non-Melanoma Skin Cancer Cells through Inhibition of Topoisomerase and Induction of DNA Damage. Pal HC; Katiyar SK Molecules; 2016 Dec; 21(12):. PubMed ID: 28009843 [TBL] [Abstract][Full Text] [Related]
9. Regulation of DNA damage responses and cell cycle progression by hMOB2. Gomez V; Gundogdu R; Gomez M; Hoa L; Panchal N; O'Driscoll M; Hergovich A Cell Signal; 2015 Feb; 27(2):326-39. PubMed ID: 25460043 [TBL] [Abstract][Full Text] [Related]
10. Caveolin-1 expression negatively regulates cell cycle progression by inducing G(0)/G(1) arrest via a p53/p21(WAF1/Cip1)-dependent mechanism. Galbiati F; Volonté D; Liu J; Capozza F; Frank PG; Zhu L; Pestell RG; Lisanti MP Mol Biol Cell; 2001 Aug; 12(8):2229-44. PubMed ID: 11514613 [TBL] [Abstract][Full Text] [Related]
11. RGNNV-induced cell cycle arrest at G1/S phase enhanced viral replication via p53-dependent pathway in GS cells. Mai W; Liu H; Chen H; Zhou Y; Chen Y Virus Res; 2018 Sep; 256():142-152. PubMed ID: 29940189 [TBL] [Abstract][Full Text] [Related]
12. p53-mediated G1 arrest requires the induction of both p21 and Killin in human colon cancer cells. Luo D; Yu C; Yu J; Su C; Li S; Liang P Cell Cycle; 2022 Jan; 21(2):140-151. PubMed ID: 34878965 [TBL] [Abstract][Full Text] [Related]
13. ICBP90 mediates Notch signaling to facilitate human hepatocellular carcinoma growth. Fu H; Xing F; Lv Y; Zeng B; You P; Liu J Tissue Cell; 2018 Oct; 54():65-71. PubMed ID: 30309512 [TBL] [Abstract][Full Text] [Related]
14. FOXO1 mediates hypoxia-induced G0/G1 arrest in ovarian somatic granulosa cells by activating the TP53INP1-p53-CDKN1A pathway. Li C; Liu Z; Wu G; Zang Z; Zhang JQ; Li X; Tao J; Shen M; Liu H Development; 2021 Jul; 148(14):. PubMed ID: 34152408 [TBL] [Abstract][Full Text] [Related]
15. TFEB Modulates p21/WAF1/CIP1 during the DNA Damage Response. Pisonero-Vaquero S; Soldati C; Cesana M; Ballabio A; Medina DL Cells; 2020 May; 9(5):. PubMed ID: 32397616 [TBL] [Abstract][Full Text] [Related]
17. Selective Killing of RAS-Malignant Tissues by Exploiting Oncogene-Induced DNA Damage. Murcia L; Clemente-Ruiz M; Pierre-Elies P; Royou A; Milán M Cell Rep; 2019 Jul; 28(1):119-131.e4. PubMed ID: 31269434 [TBL] [Abstract][Full Text] [Related]
18. Nucleotide depletion reveals the impaired ribosome biogenesis checkpoint as a barrier against DNA damage. Pelletier J; Riaño-Canalias F; Almacellas E; Mauvezin C; Samino S; Feu S; Menoyo S; Domostegui A; Garcia-Cajide M; Salazar R; Cortés C; Marcos R; Tauler A; Yanes O; Agell N; Kozma SC; Gentilella A; Thomas G EMBO J; 2020 Jul; 39(13):e103838. PubMed ID: 32484960 [TBL] [Abstract][Full Text] [Related]
19. The atypical cyclin-like protein Spy1 overrides p53-mediated tumour suppression and promotes susceptibility to breast tumourigenesis. Fifield BA; Qemo I; Kirou E; Cardiff RD; Porter LA Breast Cancer Res; 2019 Dec; 21(1):140. PubMed ID: 31829284 [TBL] [Abstract][Full Text] [Related]
20. Pulsatile MAPK Signaling Modulates p53 Activity to Control Cell Fate Decisions at the G2 Checkpoint for DNA Damage. De S; Campbell C; Venkitaraman AR; Esposito A Cell Rep; 2020 Feb; 30(7):2083-2093.e5. PubMed ID: 32075732 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]