These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 15009210)

  • 1. The structure-function relationship in the clostripain family of peptidases.
    Labrou NE; Rigden DJ
    Eur J Biochem; 2004 Mar; 271(5):983-92. PubMed ID: 15009210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the NAD+ binding site of Candida boidinii formate dehydrogenase by affinity labelling and site-directed mutagenesis.
    Labrou NE; Rigden DJ; Clonis YD
    Eur J Biochem; 2000 Nov; 267(22):6657-64. PubMed ID: 11054119
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The specificity of clostripain from Clostridium histolyticum. Mapping the S' subsites via acyl transfer to amino acid amides and peptides.
    Ullmann D; Jakubke HD
    Eur J Biochem; 1994 Aug; 223(3):865-72. PubMed ID: 8055964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MicroED structure of the C11 cysteine protease Clostripain.
    Ruma YN; Bu G; Gonen T
    bioRxiv; 2024 Jan; ():. PubMed ID: 38260293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The heterodimeric protease clostripain from Clostridium histolyticum is encoded by a single gene.
    Dargatz H; Diefenthal T; Witte V; Reipen G; von Wettstein D
    Mol Gen Genet; 1993 Jul; 240(1):140-5. PubMed ID: 8341259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clostripain linker deletion variants yield active enzyme in Escherichia coli: a possible function of the linker peptide as intramolecular inhibitor of clostripain automaturation.
    Witte V; Wolf N; Dargatz H
    Curr Microbiol; 1996 Nov; 33(5):281-6. PubMed ID: 8875906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic characterization of affinity chromatography purified clostripain.
    Ullmann D; Jakubke HD
    Biol Chem Hoppe Seyler; 1994 Feb; 375(2):89-92. PubMed ID: 8192862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of the active site of legumain links it to caspases, clostripain and gingipains in a new clan of cysteine endopeptidases.
    Chen JM; Rawlings ND; Stevens RA; Barrett AJ
    FEBS Lett; 1998 Dec; 441(3):361-5. PubMed ID: 9891971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clostripain: characterization of the active site.
    Kembhavi AA; Buttle DJ; Rauber P; Barrett AJ
    FEBS Lett; 1991 Jun; 283(2):277-80. PubMed ID: 2044766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Location of the catalytic site for phosphoenolpyruvate formation within the primary structure of Clostridium symbiosum pyruvate phosphate dikinase. 1. Identification of an essential cysteine by chemical modification with [1-14C]bromopyruvate and site-directed mutagenesis.
    Xu Y; Yankie L; Shen L; Jung YS; Mariano PS; Dunaway-Mariano D; Martin BM
    Biochemistry; 1995 Feb; 34(7):2181-7. PubMed ID: 7857929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of Ca2+-independent Staphylococcus aureus sortase A mutants.
    Hirakawa H; Ishikawa S; Nagamune T
    Biotechnol Bioeng; 2012 Dec; 109(12):2955-61. PubMed ID: 22729808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure analysis and site-directed mutagenesis of defined key residues and motives for pilus-related sortase C1 in group B Streptococcus.
    Cozzi R; Malito E; Nuccitelli A; D'Onofrio M; Martinelli M; Ferlenghi I; Grandi G; Telford JL; Maione D; Rinaudo CD
    FASEB J; 2011 Jun; 25(6):1874-86. PubMed ID: 21357525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Active site structure of a hemagglutinating protease from Porphyromonas gingivalis: similarity to clostripain.
    Nishikata M; Yoshimura F
    Biochem Mol Biol Int; 1995 Oct; 37(3):547-53. PubMed ID: 8595395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. S-(2,3-dichlorotriazinyl)glutathione. A new affinity label for probing the structure and function of glutathione transferases.
    Kotzia GA; Labrou NE
    Eur J Biochem; 2004 Sep; 271(17):3503-11. PubMed ID: 15317585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutational analysis of active site residues in the Staphylococcus aureus transpeptidase SrtA.
    Frankel BA; Tong Y; Bentley ML; Fitzgerald MC; McCafferty DG
    Biochemistry; 2007 Jun; 46(24):7269-78. PubMed ID: 17518446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A case for reverse protonation: identification of Glu160 as an acid/base catalyst in Thermoanaerobacterium saccharolyticum beta-xylosidase and detailed kinetic analysis of a site-directed mutant.
    Vocadlo DJ; Wicki J; Rupitz K; Withers SG
    Biochemistry; 2002 Aug; 41(31):9736-46. PubMed ID: 12146939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure/function analysis of a dUTPase: catalytic mechanism of a potential chemotherapeutic target.
    Harris JM; McIntosh EM; Muscat GE
    J Mol Biol; 1999 Apr; 288(2):275-87. PubMed ID: 10329142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvement of arginine 143 in nucleotide substrate binding at the active site of adenylosuccinate synthetase from Escherichia coli.
    Moe OA; Baker-Malcolm JF; Wang W; Kang C; Fromm HJ; Colman RF
    Biochemistry; 1996 Jul; 35(28):9024-33. PubMed ID: 8703905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Site-directed mutagenesis, kinetic and inhibition studies of aspartate ammonia lyase from Bacillus sp. YM55-1.
    Puthan Veetil V; Raj H; Quax WJ; Janssen DB; Poelarends GJ
    FEBS J; 2009 Jun; 276(11):2994-3007. PubMed ID: 19490103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring substrate binding and discrimination in fructose1, 6-bisphosphate and tagatose 1,6-bisphosphate aldolases.
    Zgiby SM; Thomson GJ; Qamar S; Berry A
    Eur J Biochem; 2000 Mar; 267(6):1858-68. PubMed ID: 10712619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.