These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 15009951)

  • 1. Geometric control of fibroblast growth on proton beam-micromachined scaffolds.
    Sun F; Casse D; van Kan JA; Ge R; Watt F
    Tissue Eng; 2004; 10(1-2):267-72. PubMed ID: 15009951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The threshold at which substrate nanogroove dimensions may influence fibroblast alignment and adhesion.
    Loesberg WA; te Riet J; van Delft FC; Schön P; Figdor CG; Speller S; van Loon JJ; Walboomers XF; Jansen JA
    Biomaterials; 2007 Sep; 28(27):3944-51. PubMed ID: 17576010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Observation of fibroblast motility on a micro-grooved hydrophobic elastomer substrate with different geometric characteristics.
    Su WT; Liao YF; Chu IM
    Micron; 2007; 38(3):278-85. PubMed ID: 16765053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fibroblasts on micromachined substrata orient hierarchically to grooves of different dimensions.
    Brunette DM
    Exp Cell Res; 1986 May; 164(1):11-26. PubMed ID: 3956588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Different sensitivity of human endothelial cells, smooth muscle cells and fibroblasts to topography in the nano-micro range.
    Biela SA; Su Y; Spatz JP; Kemkemer R
    Acta Biomater; 2009 Sep; 5(7):2460-6. PubMed ID: 19410529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a 3D cell culture system for investigating cell interactions with electrospun fibers.
    Sun T; Norton D; McKean RJ; Haycock JW; Ryan AJ; MacNeil S
    Biotechnol Bioeng; 2007 Aug; 97(5):1318-28. PubMed ID: 17171721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of alignment and differentiation of skeletal myoblasts by submicron ridges/grooves surface structure.
    Wang PY; Yu HT; Tsai WB
    Biotechnol Bioeng; 2010 Jun; 106(2):285-94. PubMed ID: 20148416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Micropatterned biopolymer 3D scaffold for static and dynamic culture of human fibroblasts.
    Figallo E; Flaibani M; Zavan B; Abatangelo G; Elvassore N
    Biotechnol Prog; 2007; 23(1):210-6. PubMed ID: 17269690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transition of mechanical property of porous alginate scaffold with cells during culture period.
    Sakai S; Masuhara H; Yamada Y; Ono T; Ijima H; Kawakami K
    J Biosci Bioeng; 2005 Jul; 100(1):127-9. PubMed ID: 16233864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and characterization of a porous micro-patterned scaffold for vascular tissue engineering applications.
    Sarkar S; Lee GY; Wong JY; Desai TA
    Biomaterials; 2006 Sep; 27(27):4775-82. PubMed ID: 16725195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microtopographical cues in 3D attenuate fibrotic phenotype and extracellular matrix deposition: implications for tissue regeneration.
    Ayala P; Lopez JI; Desai TA
    Tissue Eng Part A; 2010 Aug; 16(8):2519-27. PubMed ID: 20235832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel capillary channel fiber scaffolds for guided tissue engineering.
    Lu Q; Simionescu A; Vyavahare N
    Acta Biomater; 2005 Nov; 1(6):607-14. PubMed ID: 16701841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimulation of skin repair is dependent on fibroblast source and presence of extracellular matrix.
    Wang HJ; Pieper J; Schotel R; van Blitterswijk CA; Lamme EN
    Tissue Eng; 2004; 10(7-8):1054-64. PubMed ID: 15363163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stereolithography of spatially controlled multi-material bioactive poly(ethylene glycol) scaffolds.
    Arcaute K; Mann B; Wicker R
    Acta Biomater; 2010 Mar; 6(3):1047-54. PubMed ID: 19683602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating initial cell-seeding density and culture period of fibroblast growing on biodegradable tricalcium phosphate lysine disks.
    Trussell B; Ward J; Cox M; Tucci M; Benghuzzi H; Hughes J
    Biomed Sci Instrum; 2002; 38():101-6. PubMed ID: 12085584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The mechanically enhanced phase separation of sprayed polyurethane scaffolds and their effect on the alignment of fibroblasts.
    Kennedy JP; McCandless SP; Lasher RA; Hitchcock RW
    Biomaterials; 2010 Feb; 31(6):1126-32. PubMed ID: 19878993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradable honeycomb collagen scaffold for dermal tissue engineering.
    George J; Onodera J; Miyata T
    J Biomed Mater Res A; 2008 Dec; 87(4):1103-11. PubMed ID: 18792951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Primary experimental study on the construction of tissue engineering blood vessel].
    Chen B; Zhang BG; Zhang J; Gu YQ; Li JX; Yu HX; Wang ZG
    Zhonghua Wai Ke Za Zhi; 2005 Oct; 43(19):1271-4. PubMed ID: 16271228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A denatured collagen microfiber scaffold seeded with human fibroblasts and keratinocytes for skin grafting.
    Kempf M; Miyamura Y; Liu PY; Chen AC; Nakamura H; Shimizu H; Tabata Y; Kimble RM; McMillan JR
    Biomaterials; 2011 Jul; 32(21):4782-92. PubMed ID: 21477857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthetic scaffold morphology controls human dermal connective tissue formation.
    Wang H; Pieper J; Péters F; van Blitterswijk CA; Lamme EN
    J Biomed Mater Res A; 2005 Sep; 74(4):523-32. PubMed ID: 16028236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.