These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 15010487)

  • 1. Contribution of eye retraction to swallowing performance in the northern leopard frog, Rana pipiens.
    Levine RP; Monroy JA; Brainerd EL
    J Exp Biol; 2004 Mar; 207(Pt 8):1361-8. PubMed ID: 15010487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contribution of the submentalis muscle to feeding mechanics in the leopard frog, Rana pipiens.
    Wolff JB; Lee MJ; Anderson CW
    J Exp Zool A Comp Exp Biol; 2004 Aug; 301(8):666-73. PubMed ID: 15286946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A prey-type dependent hypoglossal feedback system in the frog Rana pipiens.
    Anderson CW; Nishikawa KC
    Brain Behav Evol; 1993; 42(3):189-96. PubMed ID: 8364717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature effects on the biomechanics of prey capture in the frog Rana pipiens.
    Sandusky PE; Deban SM
    J Exp Zool A Ecol Genet Physiol; 2012 Dec; 317(10):595-607. PubMed ID: 22952141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relative contributions of eyelid and eye-retraction motor systems to reflex and classically conditioned blink responses in the rabbit.
    Leal-Campanario R; Barradas-Bribiescas JA; Delgado-GarcĂ­a JM; Gruart A
    J Appl Physiol (1985); 2004 Apr; 96(4):1541-54. PubMed ID: 14578372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Frogs use retinal elevation as a cue to distance.
    Collett TS; Udin SB
    J Comp Physiol A; 1988; 163(5):677-83. PubMed ID: 3264024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative study of the tectally projecting retinal ganglion cells in the adult frog. II. Cell survival and functional recovery after optic nerve transection.
    Singman EL; Scalia F
    J Comp Neurol; 1991 May; 307(3):351-69. PubMed ID: 1856327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of isometric contractile properties in hindlimb extensor muscles of the frogs Rana pipiens and Bufo marinus: functional correlations with differences in hopping performance.
    Chadwell BA; Hartwell HJ; Peters SE
    J Morphol; 2002 Mar; 251(3):309-22. PubMed ID: 11835367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leopard frogs move their heads, but not their eyes: implications for perception of stationary objects.
    Skorina L; Kazaure H; Gruberg E
    Neurosci Lett; 2011 Sep; 502(1):61-4. PubMed ID: 21802493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The roles of visual and proprioceptive information during motor program choice in frogs.
    Anderson CW; Nishikawa KC
    J Comp Physiol A; 1996 Dec; 179(6):753-62. PubMed ID: 8956496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Helminth community structure in tadpoles of northern leopard frogs (Rana pipiens) and Woodhouse's toads (Bufo woodhousii) from Nebraska.
    Rhoden HR; Bolek MG
    Parasitol Res; 2015 Dec; 114(12):4685-92. PubMed ID: 26346456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Passive hinge forces in the feeding apparatus of Aplysia aid retraction during biting but not during swallowing.
    Sutton GP; Macknin JB; Gartman SS; Sunny GP; Beer RD; Crago PE; Neustadter DM; Chiel HJ
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2004 Jun; 190(6):501-14. PubMed ID: 15098133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The physiology of hibernation in Canadian leopard frogs (Rana pipiens) and bullfrogs (Rana catesbeiana).
    Stewart ER; Reese SA; Ultsch GR
    Physiol Biochem Zool; 2004; 77(1):65-73. PubMed ID: 15057718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Leopard frog priorities in choosing between prey at different locations.
    Dudkin EA; Peiffer T; Burkitt B; Neeb CN; Gruberg ER
    Behav Processes; 2011 Jan; 86(1):138-42. PubMed ID: 21087658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface electromyographic studies of swallowing in normal subjects: a review of 440 adults. Report 2. Quantitative data: amplitude measures.
    Vaiman M; Eviatar E; Segal S
    Otolaryngol Head Neck Surg; 2004 Nov; 131(5):773-80. PubMed ID: 15523465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An investigation of the coupling between respiration, mastication, and swallowing in the awake rabbit.
    McFarland DH; Lund JP
    J Neurophysiol; 1993 Jan; 69(1):95-108. PubMed ID: 8433136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of tongue-, jaw-, and swallowing-related muscle coordination during voluntarily triggered swallowing.
    Ono T; Iwata H; Hori K; Tamine K; Kondoh J; Hamanaka S; Maeda Y
    Int J Prosthodont; 2009; 22(5):493-8. PubMed ID: 20095201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hypoglossal neural activity during ingestion and rejection in the awake rat.
    Dinardo LA; Travers JB
    J Neurophysiol; 1994 Sep; 72(3):1181-91. PubMed ID: 7807203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stimulus frequency otoacoustic emissions in the Northern leopard frog, Rana pipiens pipiens: implications for inner ear mechanics.
    Meenderink SW; Narins PM
    Hear Res; 2006 Oct; 220(1-2):67-75. PubMed ID: 16942850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compensatory Mechanisms in Patients After a Partial or Total Glossectomy due to Oral Cancer.
    Halczy-Kowalik L; Wiktor A; Rzewuska A; Kowalczyk R; Wysocki R; Posio V
    Dysphagia; 2015 Dec; 30(6):738-50. PubMed ID: 26487064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.