These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 15010493)

  • 1. Catching for real and catching for fun in ecological psychology. Focus on "Internal models of target motion: expected dynamics overrides measured kinematics in timing manual interceptions".
    Georgopoulos A
    J Neurophysiol; 2004 Apr; 91(4):1455. PubMed ID: 15010493
    [No Abstract]   [Full Text] [Related]  

  • 2. Internal models of target motion: expected dynamics overrides measured kinematics in timing manual interceptions.
    Zago M; Bosco G; Maffei V; Iosa M; Ivanenko YP; Lacquaniti F
    J Neurophysiol; 2004 Apr; 91(4):1620-34. PubMed ID: 14627663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Internal model of gravity for hand interception: parametric adaptation to zero-gravity visual targets on Earth.
    Zago M; Lacquaniti F
    J Neurophysiol; 2005 Aug; 94(2):1346-57. PubMed ID: 15817649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of colour changes in a moving object.
    Kreegipuu K; Murd C; Allik J
    Vision Res; 2006 May; 46(11):1848-55. PubMed ID: 16387343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A quantitative synchronization model for smooth pursuit target tracking.
    Voss HU; McCandliss BD; Ghajar J; Suh M;
    Biol Cybern; 2007 Mar; 96(3):309-22. PubMed ID: 17082951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A spatio-temporal interaction on the apparent motion trace.
    Schwiedrzik CM; Alink A; Kohler A; Singer W; Muckli L
    Vision Res; 2007 Dec; 47(28):3424-33. PubMed ID: 18053847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The relation between infants' perception of catchableness and the control of catching.
    van Hof P; van der Kamp J; Savelsbergh GJ
    Dev Psychol; 2008 Jan; 44(1):182-94. PubMed ID: 18194016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visual preference for isochronic movement does not necessarily emerge from movement kinematics: a challenge for the motor simulation theory.
    Bidet-Ildei C; Méary D; Orliaguet JP
    Neurosci Lett; 2008 Jan; 430(3):236-40. PubMed ID: 18054435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cortical dynamics of anticipatory mechanisms in interception: a neuromagnetic study.
    Senot P; Baillet S; Renault B; Berthoz A
    J Cogn Neurosci; 2008 Oct; 20(10):1827-38. PubMed ID: 18370604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brain activity preceding a 2D manual catching task.
    Tombini M; Zappasodi F; Zollo L; Pellegrino G; Cavallo G; Tecchio F; Guglielmelli E; Rossini PM
    Neuroimage; 2009 Oct; 47(4):1735-46. PubMed ID: 19389476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Age differences in estimating arrival-time.
    Benguigui N; Broderick M; Ripoll H
    Neurosci Lett; 2004 Oct; 369(3):197-202. PubMed ID: 15464264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of feedback in the accuracy of perceived direction of motion-in-depth and control of interceptive action.
    Gray R; Regan D; Castaneda B; Sieffert R
    Vision Res; 2006 May; 46(10):1676-94. PubMed ID: 16169039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Models of the mechanism underlying perceived location of a perisaccadic flash.
    Pola J
    Vision Res; 2004 Nov; 44(24):2799-813. PubMed ID: 15342224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catching a gently thrown ball.
    López-Moliner J; Brenner E; Louw S; Smeets JB
    Exp Brain Res; 2010 Oct; 206(4):409-17. PubMed ID: 20862460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Learning to control collisions: the role of perceptual attunement and action boundaries.
    Fajen BR; Devaney MC
    J Exp Psychol Hum Percept Perform; 2006 Apr; 32(2):300-13. PubMed ID: 16634672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fractal modeling of human isochronous serial interval production.
    Madison G
    Biol Cybern; 2004 Feb; 90(2):105-12. PubMed ID: 14999477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Different strategies for using motion-in-depth information in catching.
    Gray R; Sieffert R
    J Exp Psychol Hum Percept Perform; 2005 Oct; 31(5):1004-22. PubMed ID: 16262495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stimulus complexity and prospective timing: clues for a parallel process model of time perception.
    Aubry F; Guillaume N; Mogicato G; Bergeret L; Celsis P
    Acta Psychol (Amst); 2008 May; 128(1):63-74. PubMed ID: 18001688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of motion coherence manipulations on the synchronization level of a perception-action task.
    Ceux T; Wagemans J; Rosas P; Montagne G; Buekers M
    Behav Brain Res; 2005 Jul; 162(1):83-9. PubMed ID: 15922068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. External timing constraints facilitate performance of everyday interceptive actions in children with Spastic Hemiparetic Cerebral Palsy.
    Ricken AX; Savelsbergh GJ; Bennett SJ
    Neurosci Lett; 2006 Dec; 410(3):187-92. PubMed ID: 17101219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.