These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 15010542)

  • 1. Energy functions for protein design I: efficient and accurate continuum electrostatics and solvation.
    Pokala N; Handel TM
    Protein Sci; 2004 Apr; 13(4):925-36. PubMed ID: 15010542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generalized born model with a simple smoothing function.
    Im W; Lee MS; Brooks CL
    J Comput Chem; 2003 Nov; 24(14):1691-702. PubMed ID: 12964188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FACTS: Fast analytical continuum treatment of solvation.
    Haberthür U; Caflisch A
    J Comput Chem; 2008 Apr; 29(5):701-15. PubMed ID: 17918282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An accelerated nonlocal Poisson-Boltzmann equation solver for electrostatics of biomolecule.
    Ying J; Xie D
    Int J Numer Method Biomed Eng; 2018 Nov; 34(11):e3129. PubMed ID: 30021243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calculating solvation energies by means of a fluctuating charge model combined with continuum solvent model.
    Zhao DX; Yu L; Gong LD; Liu C; Yang ZZ
    J Chem Phys; 2011 May; 134(19):194115. PubMed ID: 21599052
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations.
    Dolinsky TJ; Nielsen JE; McCammon JA; Baker NA
    Nucleic Acids Res; 2004 Jul; 32(Web Server issue):W665-7. PubMed ID: 15215472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accurate solution of multi-region continuum biomolecule electrostatic problems using the linearized Poisson-Boltzmann equation with curved boundary elements.
    Altman MD; Bardhan JP; White JK; Tidor B
    J Comput Chem; 2009 Jan; 30(1):132-53. PubMed ID: 18567005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new set of atomic radii for accurate estimation of solvation free energy by Poisson-Boltzmann solvent model.
    Yamagishi J; Okimoto N; Morimoto G; Taiji M
    J Comput Chem; 2014 Nov; 35(29):2132-9. PubMed ID: 25220475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FAMBE-pH: a fast and accurate method to compute the total solvation free energies of proteins.
    Vorobjev YN; Vila JA; Scheraga HA
    J Phys Chem B; 2008 Sep; 112(35):11122-36. PubMed ID: 18683966
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solvation forces on biomolecular structures: a comparison of explicit solvent and Poisson-Boltzmann models.
    Wagoner J; Baker NA
    J Comput Chem; 2004 Oct; 25(13):1623-9. PubMed ID: 15264256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiscale generalized born modeling of ligand binding energies for virtual database screening.
    Liu HY; Grinter SZ; Zou X
    J Phys Chem B; 2009 Sep; 113(35):11793-9. PubMed ID: 19678651
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational protein design is a challenge for implicit solvation models.
    Jaramillo A; Wodak SJ
    Biophys J; 2005 Jan; 88(1):156-71. PubMed ID: 15377512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuum Electrostatics Approaches to Calculating pKas and Ems in Proteins.
    Gunner MR; Baker NA
    Methods Enzymol; 2016; 578():1-20. PubMed ID: 27497160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discrimination of native loop conformations in membrane proteins: decoy library design and evaluation of effective energy scoring functions.
    Forrest LR; Woolf TB
    Proteins; 2003 Sep; 52(4):492-509. PubMed ID: 12910450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New analytic approximation to the standard molecular volume definition and its application to generalized Born calculations.
    Lee MS; Feig M; Salsbury FR; Brooks CL
    J Comput Chem; 2003 Aug; 24(11):1348-56. PubMed ID: 12827676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accurate and efficient generalized born model based on solvent accessibility: derivation and application for LogP octanol/water prediction and flexible peptide docking.
    Totrov M
    J Comput Chem; 2004 Mar; 25(4):609-19. PubMed ID: 14735578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrostatics of ligand binding: parametrization of the generalized Born model and comparison with the Poisson-Boltzmann approach.
    Liu HY; Zou X
    J Phys Chem B; 2006 May; 110(18):9304-13. PubMed ID: 16671749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Constructing irregular surfaces to enclose macromolecular complexes for mesoscale modeling using the discrete surface charge optimization (DISCO) algorithm.
    Zhang Q; Beard DA; Schlick T
    J Comput Chem; 2003 Dec; 24(16):2063-74. PubMed ID: 14531059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analytical electrostatics for biomolecules: beyond the generalized Born approximation.
    Sigalov G; Fenley A; Onufriev A
    J Chem Phys; 2006 Mar; 124(12):124902. PubMed ID: 16599720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring protein native states and large-scale conformational changes with a modified generalized born model.
    Onufriev A; Bashford D; Case DA
    Proteins; 2004 May; 55(2):383-94. PubMed ID: 15048829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.