These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 1501081)

  • 1. Evaluation of methods for estimating the rate constant of a one-compartment absorption model when absorption and elimination rate constants are equal.
    Hoke JF; Ravis WR
    J Pharm Sci; 1992 Apr; 81(4):401-2. PubMed ID: 1501081
    [No Abstract]   [Full Text] [Related]  

  • 2. Pharmacokinetic model equations for the one- and two-compartment models with first-order processes in which the absorption and exponential elimination or distribution rate constants are equal.
    Wijnand HP
    J Pharmacokinet Biopharm; 1988 Feb; 16(1):109-28. PubMed ID: 3373416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Consequence of equal absorption, distribution and/or elimination rate constants.
    Plusquellec Y; Courbon F; Nogarede S
    Eur J Drug Metab Pharmacokinet; 1999; 24(3):197-203. PubMed ID: 10716057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of absorption rate constant in a one-compartment model with the profile of the bioavailable dose eliminated as a function of multiples of half-life.
    Macheras P; Symillides M; Reppas C
    J Pharm Sci; 1993 Dec; 82(12):1298-300. PubMed ID: 8308718
    [No Abstract]   [Full Text] [Related]  

  • 5. Noncompartmental analysis for a one-compartment model with equal absorption and elimination rate constants.
    Ko H; Caputo JF; Adams WJ
    Pharm Res; 1989 Aug; 6(8):731-3. PubMed ID: 2813267
    [No Abstract]   [Full Text] [Related]  

  • 6. Unique pharmacokinetic characteristics of the one-compartment first-order absorption model with equal absorption and elimination rate constants.
    Zhi JG
    J Pharm Sci; 1990 Jul; 79(7):652-4. PubMed ID: 2398478
    [No Abstract]   [Full Text] [Related]  

  • 7. Predicting the time needed to achieve steady state if absorption and elimination constants are equal.
    Singer J; Vereczkey L
    J Pharmacokinet Biopharm; 1999 Jun; 27(3):297-300. PubMed ID: 10728491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An initial slope method for model structure: independent estimation of the elimination rate constant of a metabolite.
    Piotrovskii VK
    J Pharmacokinet Biopharm; 1991 Jun; 19(3):311-8. PubMed ID: 1875284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the assessment of the relative magnitude of rate constants in the linear open one-compartment model.
    Macheras P; Symillides M; Reppas C
    J Pharm Sci; 1992 Dec; 81(12):1231-3. PubMed ID: 1491348
    [No Abstract]   [Full Text] [Related]  

  • 10. Physiologically relevant one-compartment pharmacokinetic models for skin. 1. Development of models.
    McCarley KD; Bunge AL
    J Pharm Sci; 1998 Apr; 87(4):470-81. PubMed ID: 9548901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [A simple method for predicting equality of absorption and elimination rate constants].
    Li JW; Zhang CL
    Zhongguo Yao Li Xue Bao; 1990 Sep; 11(5):392-4. PubMed ID: 2130592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphical approach for determining whether absorption and elimination rate constants are equal in the one-compartment open model with first-order processes.
    Macheras PE
    J Pharm Sci; 1985 May; 74(5):582-4. PubMed ID: 4020640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of the rate constants in a data-sparse environment: comparison of a mathematical method and least squares analysis.
    Barcia EM; Newburger J; Young D
    J Pharm Sci; 1988 Feb; 77(2):175-7. PubMed ID: 3361434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interpretation of plasma concentration-time curves after oral dosing.
    Ronfeld RA; Benet LZ
    J Pharm Sci; 1977 Feb; 66(2):178-80. PubMed ID: 839412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Four open mammillary and catenary compartment models for pharmacokinetics studies.
    de Biasi J
    J Biomed Eng; 1989 Nov; 11(6):467-70. PubMed ID: 2811345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Population pharmacokinetic model of human insulin following different routes of administration.
    Potocka E; Baughman RA; Derendorf H
    J Clin Pharmacol; 2011 Jul; 51(7):1015-24. PubMed ID: 20940337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An APL computer program for estimating rate constants of drug absorption.
    Zeng YL; Akkermans AA; van Waning WE; Breimer DD
    Arzneimittelforschung; 1983; 33(6):902-4. PubMed ID: 6688530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new method to estimate parameters of pharmacokinetics with enterohepatic circulation.
    Abi Khalil F; Hanocq M; Dubois J
    Eur J Drug Metab Pharmacokinet; 1993; 18(2):131-9. PubMed ID: 8243495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical models for calculating the blood level of a drug with oral controlled release forms.
    Vergnaud JM
    Medinfo; 1995; 8 Pt 2():1127-31. PubMed ID: 8591386
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alternative derivation for the gastrointestinal absorption residence time.
    Chiou WL; Chen TM; Choo YS; Abdel-Hameed MH
    J Pharm Sci; 1992 May; 81(5):486-7. PubMed ID: 1403687
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.