BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 15011255)

  • 1. Continuous medium theory for nonequilibrium solvation: II. Interaction energy between solute charge and reaction field and single-sphere model for spectral shift.
    Li XY; Fu KX; Zhu Q; Shan MH
    J Comput Chem; 2004 Apr; 25(6):835-42. PubMed ID: 15011255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous medium theory for nonequilibrium solvation: III. Solvation shift by monopole approximation and multipole expansion in spherical cavity.
    Zhu Q; Fu KX; Li XY; Gong Z; Ma JY
    J Comput Chem; 2005 Mar; 26(4):399-409. PubMed ID: 15651032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous medium theory for nonequilibrium solvation: I. How to correctly evaluate solvation free energy of nonequilibrium.
    Li XY; Fu KX
    J Comput Chem; 2004 Mar; 25(4):500-9. PubMed ID: 14735569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous medium theory for nonequilibrium solvation: IV. Solvent reorganization energy of electron transfer based on conductor-like screening model.
    Fu KX; Zhu Q; Li XY; Gong Z; Ma JY; He RX
    J Comput Chem; 2006 Feb; 27(3):368-74. PubMed ID: 16380944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A study on orientation and absorption spectrum of interfacial molecules by using continuum model.
    Ma JY; Wang JB; Li XY; Huang Y; Zhu Q; Fu KX
    J Comput Chem; 2008 Jan; 29(2):198-210. PubMed ID: 17557282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calculation of solvation free energy from quantum mechanical charge density and continuum dielectric theory.
    Wang M; Wong CF
    J Phys Chem A; 2006 Apr; 110(14):4873-9. PubMed ID: 16599457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectral shift of the n → π* transition for acetone and formic acid with an explicit solvent model.
    Li YK; Zhu Q; Li XY; Fu KX; Wang XJ; Cheng XM
    J Phys Chem A; 2011 Jan; 115(3):232-43. PubMed ID: 21174450
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solvation dynamics of dipolar probes in dipolar room temperature ionic liquids: separation of ion-dipole and dipole-dipole interaction contributions.
    Kashyap HK; Biswas R
    J Phys Chem B; 2010 Jan; 114(1):254-68. PubMed ID: 20000373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions.
    Marenich AV; Cramer CJ; Truhlar DG
    J Phys Chem B; 2009 May; 113(18):6378-96. PubMed ID: 19366259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DFT-based linear solvation energy relationships for the infrared spectral shifts of acetone in polar and nonpolar organic solvents.
    Chang CM
    J Phys Chem A; 2008 Mar; 112(11):2482-8. PubMed ID: 18284222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Orientational mechanisms in liquid crystalline systems. 2. The contribution to solute ordering from the reaction field interaction between the solute electric quadrupole moment and the solvent electric field gradient.
    Celebre G; Ionescu A
    J Phys Chem B; 2010 Jan; 114(1):235-41. PubMed ID: 20017544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A self-consistent reaction field model of solvation using distributed multipoles. I. Energy and energy derivatives.
    Rinaldi D; Bouchy A; Rivail JL; Dillet V
    J Chem Phys; 2004 Feb; 120(5):2343-50. PubMed ID: 15268373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of a two-length-scale field theory to the solvation of neutral and charged molecules.
    Sitnikov G; Taran M; Muryshev A; Nechaev S
    J Chem Phys; 2006 Mar; 124(9):94501. PubMed ID: 16526861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solvation of coumarin 153 in supercritical fluoroform.
    Ingrosso F; Ladanyi BM; Mennucci B; Scalmani G
    J Phys Chem B; 2006 Mar; 110(10):4953-62. PubMed ID: 16526736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of solute-solvent electrostatic interactions on solvatochromic shifts in supercritical CO2.
    Nugent S; Ladanyi BM
    J Chem Phys; 2004 Jan; 120(2):874-84. PubMed ID: 15267923
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A CASPT2//CASSCF study of vertical and adiabatic electron transitions of acrolein in water solution.
    Losa AM; Galvan IF; Aguilar MA; Martín ME
    J Phys Chem B; 2007 Aug; 111(33):9864-70. PubMed ID: 17665941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient and accurate solvation energy calculation from polarizable continuum models.
    Lin ST; Hsieh CM
    J Chem Phys; 2006 Sep; 125(12):124103. PubMed ID: 17014162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vertical detachment energy of hydrated electron based on a modified form of solvent reorganization energy.
    Wang XJ; Zhu Q; Li YK; Cheng XM; Li XY; Fu KX; He FC
    J Phys Chem B; 2010 Feb; 114(6):2189-97. PubMed ID: 20095542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrostatic free energy and its variations in implicit solvent models.
    Che J; Dzubiella J; Li B; McCammon JA
    J Phys Chem B; 2008 Mar; 112(10):3058-69. PubMed ID: 18275182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Consequences of strong coupling between solvation and electronic structure in the excited state of a betaine dye.
    Ishida T; Rossky PJ
    J Phys Chem B; 2008 Sep; 112(36):11353-60. PubMed ID: 18707072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.