These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 15012103)

  • 1. A catalysis-based selection for peroxidase antibodies with increased activity.
    Yin J; Mills JH; Schultz PG
    J Am Chem Soc; 2004 Mar; 126(10):3006-7. PubMed ID: 15012103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The avidin-biotin complex (ABC) method and other avidin-biotin binding methods.
    Bratthauer GL
    Methods Mol Biol; 2010; 588():257-70. PubMed ID: 20012837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro abzyme evolution to optimize antibody recognition for catalysis.
    Takahashi N; Kakinuma H; Liu L; Nishi Y; Fujii I
    Nat Biotechnol; 2001 Jun; 19(6):563-7. PubMed ID: 11385462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing the importance of second sphere residues in an esterolytic antibody by phage display.
    Arkin MR; Wells JA
    J Mol Biol; 1998 Dec; 284(4):1083-94. PubMed ID: 9837728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cu-free cycloaddition for identifying catalytic active adenylation domains of nonribosomal peptide synthetases by phage display.
    Zou Y; Yin J
    Bioorg Med Chem Lett; 2008 Oct; 18(20):5664-7. PubMed ID: 18801656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Turnover-based in vitro selection and evolution of biocatalysts from a fully synthetic antibody library.
    Cesaro-Tadic S; Lagos D; Honegger A; Rickard JH; Partridge LJ; Blackburn GM; Plückthun A
    Nat Biotechnol; 2003 Jun; 21(6):679-85. PubMed ID: 12754520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Positional ordering of reacting groups contributes significantly to the efficiency of proton transfer at an antibody active site.
    Seebeck FP; Hilvert D
    J Am Chem Soc; 2005 Feb; 127(4):1307-12. PubMed ID: 15669871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics study of a selenium-containing ScFv catalytic antibody that mimics glutathione peroxidase.
    Su D; You D; Ren X; Luo G; Mu Y; Yan G; Xue Y; Shen J
    Biochem Biophys Res Commun; 2001 Jul; 285(3):702-7. PubMed ID: 11453650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human catalytic antibody Se-scFv-B3 with high glutathione peroxidase activity.
    Huo R; Wei J; Xu J; Lv S; Zheng Q; Yan F; Su J; Fan J; Li J; Duan Y; Yu Y; Jin F; Sun W; Shi Y; Cong D; Li W; Yan G; Luo G
    J Mol Recognit; 2008; 21(5):324-9. PubMed ID: 18574795
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selection and characterization of lipase abzyme from phage displayed antibody libraries.
    Leong MK; Chen C; Shar KC; Shiuan D
    Biochem Biophys Res Commun; 2007 Sep; 361(3):567-73. PubMed ID: 17673171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissecting the streptavidin-biotin interaction by phage-displayed shotgun scanning.
    Avrantinis SK; Stafford RL; Tian X; Weiss GA
    Chembiochem; 2002 Dec; 3(12):1229-34. PubMed ID: 12465031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Catalytic and immunochemical properties of ferritin conjugates with horseradish peroxidase].
    Denisov VN; Metelitsa DI
    Biokhimiia; 1987 Aug; 52(8):1248-57. PubMed ID: 3311174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Versatile peroxidase oxidation of high redox potential aromatic compounds: site-directed mutagenesis, spectroscopic and crystallographic investigation of three long-range electron transfer pathways.
    Pérez-Boada M; Ruiz-Dueñas FJ; Pogni R; Basosi R; Choinowski T; Martínez MJ; Piontek K; Martínez AT
    J Mol Biol; 2005 Nov; 354(2):385-402. PubMed ID: 16246366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peroxidase activity of cationic metalloporphyrin-antibody complexes.
    Yamaguchi H; Tsubouchi K; Kawaguchi K; Horita E; Harada A
    Chemistry; 2004 Nov; 10(23):6179-86. PubMed ID: 15515084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression improvement and mechanistic study of the retro-Diels-Alderase catalytic antibody 10F11 by site-directed mutagenesis.
    Zheng L; Goddard JP; Baumann U; Reymond JL
    J Mol Biol; 2004 Aug; 341(3):807-14. PubMed ID: 15288788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of heme-apoprotein interactions on the activity of horseradish and wheat germ peroxidases.
    Fernández M; Rezzano I; Robinsohn A
    Biochem Biophys Res Commun; 1994 Oct; 204(1):1-6. PubMed ID: 7945347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissociation-independent selection of high-affinity anti-hapten phage antibodies using cleavable biotin-conjugated haptens.
    Kobayashi N; Karibe T; Goto J
    Anal Biochem; 2005 Dec; 347(2):287-96. PubMed ID: 16288966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A heme-peptide metalloenzyme mimetic with natural peroxidase-like activity.
    Nastri F; Lista L; Ringhieri P; Vitale R; Faiella M; Andreozzi C; Travascio P; Maglio O; Lombardi A; Pavone V
    Chemistry; 2011 Apr; 17(16):4444-53. PubMed ID: 21416513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of horseradish peroxidase inactivation by benzhydrazide: a critical evaluation of arylhydrazides as peroxidase inhibitors.
    Aitken SM; Ouellet M; Percival MD; English AM
    Biochem J; 2003 Nov; 375(Pt 3):613-21. PubMed ID: 12868961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modified microperoxidases exhibit different reactivity towards phenolic substrates.
    Dallacosta C; Casella L; Monzani E
    Chembiochem; 2004 Dec; 5(12):1692-9. PubMed ID: 15532028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.