BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 15012155)

  • 1. Deuterium NMR used to indicate a common mechanism for the biosynthesis of ricinoleic acid by Ricinus communis and Claviceps purpurea.
    Billault I; Mantle PG; Robins RJ
    J Am Chem Soc; 2004 Mar; 126(10):3250-6. PubMed ID: 15012155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Final report on the safety assessment of Ricinus Communis (Castor) Seed Oil, Hydrogenated Castor Oil, Glyceryl Ricinoleate, Glyceryl Ricinoleate SE, Ricinoleic Acid, Potassium Ricinoleate, Sodium Ricinoleate, Zinc Ricinoleate, Cetyl Ricinoleate, Ethyl Ricinoleate, Glycol Ricinoleate, Isopropyl Ricinoleate, Methyl Ricinoleate, and Octyldodecyl Ricinoleate.
    Int J Toxicol; 2007; 26 Suppl 3():31-77. PubMed ID: 18080873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biochemical aspects of castor oil biosynthesis.
    McKeon TA; Chen GQ; Lin JT
    Biochem Soc Trans; 2000 Dec; 28(6):972-4. PubMed ID: 11171276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ricinoleic acid biosynthesis and triacylglycerol assembly in microsomal preparations from developing castor-bean (Ricinus communis) endosperm.
    Bafor M; Smith MA; Jonsson L; Stobart K; Stymne S
    Biochem J; 1991 Dec; 280 ( Pt 2)(Pt 2):507-14. PubMed ID: 1747126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crucial enzymes in the hydroxylated triacylglycerol-ricinoleate biosynthesis pathway of castor bean.
    Chen Y; Liu L; Tian X; Di J; Su Y; Huang F; Chen Y
    Curr Protein Pept Sci; 2014; 15(6):572-82. PubMed ID: 25059327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular and biochemical characterization of the OLE-1 high-oleic castor seed (Ricinus communis L.) mutant.
    Venegas-Calerón M; Sánchez R; Salas JJ; Garcés R; Martínez-Force E
    Planta; 2016 Jul; 244(1):245-58. PubMed ID: 27056057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biosynthesis of ricinoleate in castor oil.
    McKeon TA; Lin JT; Stafford AE
    Adv Exp Med Biol; 1999; 464():37-47. PubMed ID: 10335384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combined analysis of C-18 unsaturated fatty acids using natural abundance deuterium 2D NMR spectroscopy in chiral oriented solvents.
    Lesot P; Baillif V; Billault I
    Anal Chem; 2008 Apr; 80(8):2963-72. PubMed ID: 18327921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endoplasmic reticulum-located PDAT1-2 from castor bean enhances hydroxy fatty acid accumulation in transgenic plants.
    Kim HU; Lee KR; Go YS; Jung JH; Suh MC; Kim JB
    Plant Cell Physiol; 2011 Jun; 52(6):983-93. PubMed ID: 21659329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular species of acylglycerols incorporating radiolabeled fatty acids from castor (Ricinus communis L.) microsomal incubations.
    Lin JT; Chen JM; Liao LP; McKeon TA
    J Agric Food Chem; 2002 Aug; 50(18):5077-81. PubMed ID: 12188611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosynthesis of triacylglycerols containing ricinoleate in castor microsomes using 1-acyl-2-oleoyl-sn-glycero-3-phosphocholine as the substrate of oleoyl-12-hydroxylase.
    Lin JT; Woodruff CL; Lagouche OJ; McKeon TA; Stafford AE; Goodrich-Tanrikulu M; Singleton JA; Haney CA
    Lipids; 1998 Jan; 33(1):59-69. PubMed ID: 9470174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Type II diacylglycerol acyltransferase from Claviceps purpurea with ricinoleic acid, a hydroxyl fatty acid of industrial importance, as preferred substrate.
    Mavraganis I; Meesapyodsuk D; Vrinten P; Smith M; Qiu X
    Appl Environ Microbiol; 2010 Feb; 76(4):1135-42. PubMed ID: 20023082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accumulation of ricinoleic, lesquerolic, and densipolic acids in seeds of transgenic Arabidopsis plants that express a fatty acyl hydroxylase cDNA from castor bean.
    Broun P; Somerville C
    Plant Physiol; 1997 Mar; 113(3):933-42. PubMed ID: 9085577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toxicology and pharmacology of sodium ricinoleate.
    Burdock GA; Carabin IG; Griffiths JC
    Food Chem Toxicol; 2006 Oct; 44(10):1689-98. PubMed ID: 16831502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tissue-specific differences in metabolites and transcripts contribute to the heterogeneity of ricinoleic acid accumulation in Ricinus communis L. (castor) seeds.
    Sturtevant D; Romsdahl TB; Yu XH; Burks DJ; Azad RK; Shanklin J; Chapman KD
    Metabolomics; 2019 Jan; 15(1):6. PubMed ID: 30830477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterisation of the FAD2 gene family from Hiptage benghalensis: a ricinoleic acid accumulating plant.
    Zhou XR; Singh SP; Green AG
    Phytochemistry; 2013 Aug; 92():42-8. PubMed ID: 23747094
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyamines are essential for the synthesis of 2-ricinoleoyl phosphatidic acid in developing seeds of castor.
    Tomosugi M; Ichihara K; Saito K
    Planta; 2006 Jan; 223(2):349-58. PubMed ID: 16133210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Natural deuterium distribution in fatty acids isolated from peanut seed oil: a site-specific study by quantitative 2H NMR spectroscopy.
    Duan JR; Billault I; Mabon F; Robins R
    Chembiochem; 2002 Aug; 3(8):752-9. PubMed ID: 12203973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the incorporation of oleate and ricinoleate into phosphatidylcholines and acylglycerols in soybean microsomes.
    Lin JT; Ikeda MD; McKeon TA
    J Agric Food Chem; 2004 Mar; 52(5):1152-6. PubMed ID: 14995113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular species of PC and PE formed during castor oil biosynthesis.
    Lin JT; Chen JM; Chen P; Liao LP; McKeon TA
    Lipids; 2002 Oct; 37(10):991-5. PubMed ID: 12530559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.