These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 15012289)

  • 1. DIOXYGENASES: Molecular Structure and Role in Plant Metabolism.
    Prescott AG; John P
    Annu Rev Plant Physiol Plant Mol Biol; 1996 Jun; 47():245-271. PubMed ID: 15012289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GROWTH RETARDANTS: Effects on Gibberellin Biosynthesis and Other Metabolic Pathways.
    Rademacher W
    Annu Rev Plant Physiol Plant Mol Biol; 2000 Jun; 51():501-531. PubMed ID: 15012200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular characterization of carotenoid cleavage dioxygenases and the effect of gibberellin, abscisic acid, and sodium chloride on the expression of genes involved in the carotenoid biosynthetic pathway and carotenoid accumulation in the callus of Scutellaria baicalensis Georgi.
    Tuan PA; Kim JK; Lee S; Chae SC; Park SU
    J Agric Food Chem; 2013 Jun; 61(23):5565-72. PubMed ID: 23683071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional and evolutionary relationships among diverse oxygenases.
    Harayama S; Kok M; Neidle EL
    Annu Rev Microbiol; 1992; 46():565-601. PubMed ID: 1444267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidative tailoring reactions catalyzed by nonheme iron-dependent enzymes: streptorubin B biosynthesis as an example.
    Sydor PK; Challis GL
    Methods Enzymol; 2012; 516():195-218. PubMed ID: 23034230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multifunctional flavonoid dioxygenases: flavonol and anthocyanin biosynthesis in Arabidopsis thaliana L.
    Martens S; Preuss A; Matern U
    Phytochemistry; 2010 Jul; 71(10):1040-9. PubMed ID: 20457455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of the biosynthesis of plant hormones by cytochrome P450s.
    Kim GT; Tsukaya H
    J Plant Res; 2002 Jun; 115(3):169-77. PubMed ID: 12579366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum chemical studies of dioxygen activation by mononuclear non-heme iron enzymes with the 2-His-1-carboxylate facial triad.
    Bassan A; Borowski T; Siegbahn PE
    Dalton Trans; 2004 Oct; (20):3153-62. PubMed ID: 15483690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-heme dioxygenases: cellular sensors and regulators jelly rolled into one?
    Ozer A; Bruick RK
    Nat Chem Biol; 2007 Mar; 3(3):144-53. PubMed ID: 17301803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biochemical Characterization of a Multifunctional Mononuclear Nonheme Iron Enzyme (PtlD) in Neopentalenoketolactone Biosynthesis.
    Deng Q; Liu Y; Chen L; Xu M; Naowarojna N; Lee N; Chen L; Zhu D; Hong X; Deng Z; Liu P; Zhao C
    Org Lett; 2019 Sep; 21(18):7592-7596. PubMed ID: 31490082
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling the 2-His-1-carboxylate facial triad: iron-catecholato complexes as structural and functional models of the extradiol cleaving dioxygenases.
    Bruijnincx PC; Lutz M; Spek AL; Hagen WR; Weckhuysen BM; van Koten G; Gebbink RJ
    J Am Chem Soc; 2007 Feb; 129(8):2275-86. PubMed ID: 17266307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure, catalytic activity and evolutionary relationships of 1-aminocyclopropane-1-carboxylate synthase, the key enzyme of ethylene synthesis in higher plants.
    Jakubowicz M
    Acta Biochim Pol; 2002; 49(3):757-74. PubMed ID: 12422245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of electron transport proteins on the reactions catalyzed by Fusarium fujikuroi gibberellin monooxygenases.
    Troncoso C; Cárcamo J; Hedden P; Tudzynski B; Rojas MC
    Phytochemistry; 2008 Feb; 69(3):672-83. PubMed ID: 17920091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of hormone metabolism in Arabidopsis seeds: phytochrome regulation of abscisic acid metabolism and abscisic acid regulation of gibberellin metabolism.
    Seo M; Hanada A; Kuwahara A; Endo A; Okamoto M; Yamauchi Y; North H; Marion-Poll A; Sun TP; Koshiba T; Kamiya Y; Yamaguchi S; Nambara E
    Plant J; 2006 Nov; 48(3):354-66. PubMed ID: 17010113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria.
    Glick BR; Penrose DM; Li J
    J Theor Biol; 1998 Jan; 190(1):63-8. PubMed ID: 9473391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Advances in plant lipoxygenases research].
    Hu T; Hu Z; Qü X; Ren Y; Chen G
    Sheng Wu Gong Cheng Xue Bao; 2009 Jan; 25(1):1-9. PubMed ID: 19441219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. What factors influence the rate constant of substrate epoxidation by compound I of cytochrome P450 and analogous iron(IV)-oxo oxidants?
    Kumar D; Karamzadeh B; Sastry GN; de Visser SP
    J Am Chem Soc; 2010 Jun; 132(22):7656-67. PubMed ID: 20481499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzymes that regulate ethylene levels--1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, ACC synthase and ACC oxidase.
    Penrose DM; Glick BR
    Indian J Exp Biol; 1997 Jan; 35(1):1-17. PubMed ID: 9279127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Benzylisoquinoline alkaloid metabolism: a century of discovery and a brave new world.
    Hagel JM; Facchini PJ
    Plant Cell Physiol; 2013 May; 54(5):647-72. PubMed ID: 23385146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzymatic hydroxylation of aromatic compounds.
    Ullrich R; Hofrichter M
    Cell Mol Life Sci; 2007 Feb; 64(3):271-93. PubMed ID: 17221166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.