These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 15012386)

  • 21. Increased heat resistance in mycelia from wood fungi prevalent in forests characterized by fire: a possible adaptation to forest fire.
    Carlsson F; Edman M; Holm S; Eriksson AM; Jonsson BG
    Fungal Biol; 2012 Oct; 116(10):1025-31. PubMed ID: 23063181
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biotic disturbance agents in the boreal forest: considerations for vegetation change models.
    Malmström CM; Raffa KF
    Glob Chang Biol; 2000 Dec; 6(S1):35-48. PubMed ID: 35026937
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Large-scale forest fragmentation increases the duration of tent caterpillar outbreak.
    Roland J
    Oecologia; 1993 Feb; 93(1):25-30. PubMed ID: 28313769
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Divergence in foraging behavior of foliage-gleaning birds of Canadian and Russian boreal forests.
    Greenberg R; Pravosudov V; Sterling J; Kozlenko A; Kontorschikov V
    Oecologia; 1999 Aug; 120(3):451-462. PubMed ID: 28308022
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Vision of Managing for Pest-Resistant Landscapes: Realistic or Utopic?
    Kneeshaw DD; Sturtevant BR; DeGrandpé L; Doblas-Miranda E; James PMA; Tardif D; Burton PJ
    Curr For Rep; 2021; 7(2):97-113. PubMed ID: 35620173
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fire deficit increases wildfire risk for many communities in the Canadian boreal forest.
    Parisien MA; Barber QE; Hirsch KG; Stockdale CA; Erni S; Wang X; Arseneault D; Parks SA
    Nat Commun; 2020 May; 11(1):2121. PubMed ID: 32358496
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Leaf consumption by insects in three Eucalyptus forest types in Southeastern Australia and their role in short-term nutrient cycling.
    Ohmart CP; Stewart LG; Thomas JR
    Oecologia; 1983 Sep; 59(2-3):322-330. PubMed ID: 28310253
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Relative Influence of Diseases and Other Small-Scale Disturbances on Fuel Loading in the Black Hills.
    Lundquist JE
    Plant Dis; 2007 Feb; 91(2):147-152. PubMed ID: 30780996
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A newly developed Lagrangian chemical transport scheme: Part 1. Simulation of a boreal forest fire plume.
    Liu Y; Huang Y; Liggio J; Hayden K; Mihele C; Wentzell J; Wheeler M; Leithead A; Moussa S; Xie C; Yang Y; Zhang Y; Han T; Li SM
    Sci Total Environ; 2023 Jul; 880():163232. PubMed ID: 37023817
    [TBL] [Abstract][Full Text] [Related]  

  • 30. White pine blister rust control in North America: a case history.
    Maloy OC
    Annu Rev Phytopathol; 1997; 35():87-109. PubMed ID: 15012516
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Analysis of the dynamics of forest insect numerical population based on the principle of the stability of mobile ecological systems].
    Isaev AS; Khlebopros RG
    Zh Obshch Biol; 1974; 35(5):737-45. PubMed ID: 4432644
    [No Abstract]   [Full Text] [Related]  

  • 32. Correction to: Fire Management in The Boreal Forest of Swedish Sápmi: Prescribed Burning and Consideration of Sami Reindeer Herding During 1920-1970.
    Cogos S; Östlund L; Roturier S
    Environ Manage; 2021 Sep; 68(3):444. PubMed ID: 34410463
    [No Abstract]   [Full Text] [Related]  

  • 33. The Northern Limit of the Fauna of the African Equatorial Forest.
    Schwarz E
    Science; 1949 Jul; 110(2848):124. PubMed ID: 17780249
    [No Abstract]   [Full Text] [Related]  

  • 34. Correction to: Long-Term Recovery of Microbial Communities in the Boreal Bryosphere Following Fire Disturbance.
    Cutler NA; Arróniz-Crespo M; Street LE; Jones DL; Chaput DL; DeLuca TH
    Microb Ecol; 2020 Feb; 79(2):516. PubMed ID: 31286169
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Renormalization group approach to the critical behavior of the forest-fire model.
    Loreto V; Pietronero L; Vespignani A; Zapperi S
    Phys Rev Lett; 1995 Jul; 75(3):465-468. PubMed ID: 10060028
    [No Abstract]   [Full Text] [Related]  

  • 36. Exact results for the one-dimensional self-organized critical forest-fire model.
    Drossel B; Clar S; Schwabl F
    Phys Rev Lett; 1993 Dec; 71(23):3739-3742. PubMed ID: 10055061
    [No Abstract]   [Full Text] [Related]  

  • 37. Self-organized critical forest-fire model.
    Drossel B; Schwabl F
    Phys Rev Lett; 1992 Sep; 69(11):1629-1632. PubMed ID: 10046273
    [No Abstract]   [Full Text] [Related]  

  • 38. Self-organized critical forest-fire model: Mean-field theory and simulation results in 1 to 6 dimenisons.
    Christensen K; Flyvbjerg H; Olami Z
    Phys Rev Lett; 1993 Oct; 71(17):2737-2740. PubMed ID: 10054763
    [No Abstract]   [Full Text] [Related]  

  • 39. Airborne infrared observations and analyses of a large forest fire.
    Stearns JR; Zahniser MS; Kolb CE; Sandford BP
    Appl Opt; 1986 Aug; 25(15):2554. PubMed ID: 18231527
    [No Abstract]   [Full Text] [Related]  

  • 40. Short-term effects of wildfire on soil arthropods in a semi-arid grassland on the Loess Plateau.
    Yang X; Liu RT; Shao MA; Wei XR; Li TC; Chen MY; Li ZY; Dai YC; Gan M
    Front Microbiol; 2022; 13():989351. PubMed ID: 36338065
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.