These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
311 related articles for article (PubMed ID: 15012427)
1. Chemical reaction dynamics beyond the Born-Oppenheimer approximation. Butler LJ Annu Rev Phys Chem; 1998; 49():125-71. PubMed ID: 15012427 [TBL] [Abstract][Full Text] [Related]
2. Electron wavepacket dynamics in highly quasi-degenerate coupled electronic states: a theory for chemistry where the notion of adiabatic potential energy surface loses the sense. Yonehara T; Takatsuka K J Chem Phys; 2012 Dec; 137(22):22A520. PubMed ID: 23249057 [TBL] [Abstract][Full Text] [Related]
3. Excited electronic states and nonadiabatic effects in contemporary chemical dynamics. Mahapatra S Acc Chem Res; 2009 Aug; 42(8):1004-15. PubMed ID: 19456094 [TBL] [Abstract][Full Text] [Related]
4. Electronic quantum effects mapped onto non-Born-Oppenheimer nuclear paths: nonclassical surmounting over potential barriers and trapping above the transition states due to nonadiabatic path-branching. Yamamoto K; Takatsuka K J Chem Phys; 2014 Mar; 140(12):124111. PubMed ID: 24697428 [TBL] [Abstract][Full Text] [Related]
5. Theoretical study of the validity of the Born-Oppenheimer approximation in the Cl + H2 --> HCl + H reaction. Alexander MH; Capecchi G; Werner HJ Science; 2002 Apr; 296(5568):715-8. PubMed ID: 11976448 [TBL] [Abstract][Full Text] [Related]
7. Non-Born-Oppenheimer quantum chemistry on the fly with continuous path branching due to nonadiabatic and intense optical interactions. Yonehara T; Takatsuka K J Chem Phys; 2010 Jun; 132(24):244102. PubMed ID: 20590176 [TBL] [Abstract][Full Text] [Related]
8. Exploring dynamical electron theory beyond the Born-Oppenheimer framework: from chemical reactivity to non-adiabatically coupled electronic and nuclear wavepackets on-the-fly under laser field. Takatsuka K; Yonehara T Phys Chem Chem Phys; 2011 Mar; 13(11):4987-5016. PubMed ID: 21321712 [TBL] [Abstract][Full Text] [Related]
9. The exact molecular wavefunction as a product of an electronic and a nuclear wavefunction. Cederbaum LS J Chem Phys; 2013 Jun; 138(22):224110. PubMed ID: 23781786 [TBL] [Abstract][Full Text] [Related]
10. Non-Born-Oppenheimer path in anti-Hermitian dynamics for nonadiabatic transitions. Takatsuka K J Chem Phys; 2006 Feb; 124(6):64111. PubMed ID: 16483200 [TBL] [Abstract][Full Text] [Related]
16. Generalization of classical mechanics for nuclear motions on nonadiabatically coupled potential energy surfaces in chemical reactions. Takatsuka K J Phys Chem A; 2007 Oct; 111(41):10196-204. PubMed ID: 17676718 [TBL] [Abstract][Full Text] [Related]
17. Evidence for excited spin-orbit state reaction dynamics in F+H2: theory and experiment. Lique F; Alexander MH; Li G; Werner HJ; Nizkorodov SA; Harper WW; Nesbitt DJ J Chem Phys; 2008 Feb; 128(8):084313. PubMed ID: 18315052 [TBL] [Abstract][Full Text] [Related]
18. Breakdown of the adiabatic Born-Oppenheimer approximation in graphene. Pisana S; Lazzeri M; Casiraghi C; Novoselov KS; Geim AK; Ferrari AC; Mauri F Nat Mater; 2007 Mar; 6(3):198-201. PubMed ID: 17293849 [TBL] [Abstract][Full Text] [Related]
19. How adiabatic is activated adsorption/associative desorption? Luntz AC; Persson M J Chem Phys; 2005 Aug; 123(7):074704. PubMed ID: 16229607 [TBL] [Abstract][Full Text] [Related]
20. Ab initio calculations on the excited states of Na3 cluster to explore beyond Born-Oppenheimer theories: adiabatic to diabatic potential energy surfaces and nuclear dynamics. Paul AK; Ray S; Mukhopadhyay D; Adhikari S J Chem Phys; 2011 Jul; 135(3):034107. PubMed ID: 21786987 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]