These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 15012427)

  • 21. Quantum-classical dynamics of scattering processes in adiabatic and diabatic representations.
    Puzari P; Sarkar B; Adhikari S
    J Chem Phys; 2004 Jul; 121(2):707-21. PubMed ID: 15260597
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Adiabatic and nonadiabatic dissociation of ethyl radical.
    Hostettler JM; Bach A; Chen P
    J Chem Phys; 2009 Jan; 130(3):034303. PubMed ID: 19173517
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Insight into selected reactions in low-temperature dimethyl ether combustion from Born-Oppenheimer molecular dynamics.
    Andersen A; Carter EA
    J Phys Chem A; 2006 Feb; 110(4):1393-407. PubMed ID: 16435800
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electronic and nuclear fluxes induced by quantum interference in the adiabatic and nonadiabatic dynamics in the Born-Huang representation.
    Matsuzaki R; Takatsuka K
    J Chem Phys; 2019 Jan; 150(1):014103. PubMed ID: 30621422
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transition states, reaction paths, and thermochemistry using the nuclear-electronic orbital analytic Hessian.
    Schneider PE; Tao Z; Pavošević F; Epifanovsky E; Feng X; Hammes-Schiffer S
    J Chem Phys; 2021 Feb; 154(5):054108. PubMed ID: 33557565
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reaction path potential for complex systems derived from combined ab initio quantum mechanical and molecular mechanical calculations.
    Lu Z; Yang W
    J Chem Phys; 2004 Jul; 121(1):89-100. PubMed ID: 15260525
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Six-dimensional dynamics study of reactive and non reactive scattering of H(2) from Cu(111) using a chemically accurate potential energy surface.
    Díaz C; Olsen RA; Auerbach DJ; Kroes GJ
    Phys Chem Chem Phys; 2010 Jun; 12(24):6499-519. PubMed ID: 20473432
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Full-dimensional quantum stereodynamics of the non-adiabatic quenching of OH(A
    Zhao B; Han S; Malbon CL; Manthe U; Yarkony DR; Guo H
    Nat Chem; 2021 Sep; 13(9):909-915. PubMed ID: 34373597
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electronic and nuclear flux analysis on nonadiabatic electron transfer reaction: A view from single-configuration adiabatic born-huang representation.
    Matsuzaki R; Takatsuka K
    J Comput Chem; 2019 Jan; 40(1):148-163. PubMed ID: 30520116
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nonadiabatic chemical dynamics in an intense laser field: electronic wave packet coupled with classical nuclear motions.
    Yagi K; Takatsuka K
    J Chem Phys; 2005 Dec; 123(22):224103. PubMed ID: 16375466
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Including Tunneling in Non-Born-Oppenheimer Simulations.
    Zheng J; Meana-Pañeda R; Truhlar DG
    J Phys Chem Lett; 2014 Jun; 5(11):2039-43. PubMed ID: 26273892
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantifying the breakdown of the Born-Oppenheimer approximation in surface chemistry.
    Rahinov I; Cooper R; Matsiev D; Bartels C; Auerbach DJ; Wodtke AM
    Phys Chem Chem Phys; 2011 Jul; 13(28):12680-92. PubMed ID: 21677973
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adjustment of Born-Oppenheimer electronic wave functions to simplify close coupling calculations.
    Buenker RJ; Liebermann HP; Zhang Y; Wu Y; Yan L; Liu C; Qu Y; Wang J
    J Comput Chem; 2013 Apr; 34(11):928-37. PubMed ID: 23345171
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Non-adiabatic effects within a single thermally averaged potential energy surface: thermal expansion and reaction rates of small molecules.
    Alonso JL; Castro A; Clemente-Gallardo J; Echenique P; Mazo JJ; Polo V; Rubio A; Zueco D
    J Chem Phys; 2012 Dec; 137(22):22A533. PubMed ID: 23249070
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Breakdown of the Born-Oppenheimer approximation in the F+ o-D2 -> DF + D reaction.
    Che L; Ren Z; Wang X; Dong W; Dai D; Wang X; Zhang DH; Yang X; Sheng L; Li G; Werner HJ; Lique F; Alexander MH
    Science; 2007 Aug; 317(5841):1061-4. PubMed ID: 17717180
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Non-Born-Oppenheimer molecular dynamics of Na...FH photodissociation.
    Jasper AW; Truhlar DG
    J Chem Phys; 2007 Nov; 127(19):194306. PubMed ID: 18035882
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Measuring nonadiabaticity of molecular quantum dynamics with quantum fidelity and with its efficient semiclassical approximation.
    Zimmermann T; Vaníček J
    J Chem Phys; 2012 Mar; 136(9):094106. PubMed ID: 22401428
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Calculation of non-adiabatic coupling vectors in a local-orbital basis set.
    Abad E; Lewis JP; Zobač V; Hapala P; Jelínek P; Ortega J
    J Chem Phys; 2013 Apr; 138(15):154106. PubMed ID: 23614411
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Path integral formulation for quantum nonadiabatic dynamics and the mixed quantum classical limit.
    Krishna V
    J Chem Phys; 2007 Apr; 126(13):134107. PubMed ID: 17430016
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The extent of non-Born-Oppenheimer coupling in the reaction of Cl(2P) with para-H2.
    Wang X; Dong W; Xiao C; Che L; Ren Z; Dai D; Wang X; Casavecchia P; Yang X; Jiang B; Xie D; Sun Z; Lee SY; Zhang DH; Werner HJ; Alexander MH
    Science; 2008 Oct; 322(5901):573-6. PubMed ID: 18948537
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.