BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 15012936)

  • 1. Phylogeny of shorebirds, gulls, and alcids (Aves: Charadrii) from the cytochrome-b gene: parsimony, Bayesian inference, minimum evolution, and quartet puzzling.
    Thomas GH; Wills MA; Székely T
    Mol Phylogenet Evol; 2004 Mar; 30(3):516-26. PubMed ID: 15012936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequences from 14 mitochondrial genes provide a well-supported phylogeny of the Charadriiform birds congruent with the nuclear RAG-1 tree.
    Paton TA; Baker AJ
    Mol Phylogenet Evol; 2006 Jun; 39(3):657-67. PubMed ID: 16531074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phylogenetic relationships of glyptosternoid fishes (Siluriformes: Sisoridae) inferred from mitochondrial cytochrome b gene sequences.
    Peng Z; He S; Zhang Y
    Mol Phylogenet Evol; 2004 Jun; 31(3):979-87. PubMed ID: 15120395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular phylogeny of the carnivora (mammalia): assessing the impact of increased sampling on resolving enigmatic relationships.
    Flynn JJ; Finarelli JA; Zehr S; Hsu J; Nedbal MA
    Syst Biol; 2005 Apr; 54(2):317-37. PubMed ID: 16012099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular systematics of the Eastern Fence Lizard (Sceloporus undulatus): a comparison of Parsimony, Likelihood, and Bayesian approaches.
    Leaché AD; Reeder TW
    Syst Biol; 2002 Feb; 51(1):44-68. PubMed ID: 11943092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RAG-1 sequences resolve phylogenetic relationships within Charadriiform birds.
    Paton TA; Baker AJ; Groth JG; Barrowclough GF
    Mol Phylogenet Evol; 2003 Nov; 29(2):268-78. PubMed ID: 13678682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The phylogeny of Cetartiodactyla: the importance of dense taxon sampling, missing data, and the remarkable promise of cytochrome b to provide reliable species-level phylogenies.
    Agnarsson I; May-Collado LJ
    Mol Phylogenet Evol; 2008 Sep; 48(3):964-85. PubMed ID: 18590827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phylogenetic investigations of Antarctic notothenioid fishes (Perciformes: Notothenioidei) using complete gene sequences of the mitochondrial encoded 16S rRNA.
    Near TJ; Pesavento JJ; Cheng CH
    Mol Phylogenet Evol; 2004 Sep; 32(3):881-91. PubMed ID: 15288063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phylogenetic relationships and divergence times of Charadriiformes genera: multigene evidence for the Cretaceous origin of at least 14 clades of shorebirds.
    Baker AJ; Pereira SL; Paton TA
    Biol Lett; 2007 Apr; 3(2):205-9. PubMed ID: 17284401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unraveling the evolutionary radiation of the thoracican barnacles using molecular and morphological evidence: a comparison of several divergence time estimation approaches.
    Pérez-Losada M; Høeg JT; Crandall KA
    Syst Biol; 2004 Apr; 53(2):244-64. PubMed ID: 15205051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ecdysozoan phylogeny and Bayesian inference: first use of nearly complete 28S and 18S rRNA gene sequences to classify the arthropods and their kin.
    Mallatt JM; Garey JR; Shultz JW
    Mol Phylogenet Evol; 2004 Apr; 31(1):178-91. PubMed ID: 15019618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple gene sequences resolve phylogenetic relationships in the shorebird suborder Scolopaci (Aves: Charadriiformes).
    Gibson R; Baker A
    Mol Phylogenet Evol; 2012 Jul; 64(1):66-72. PubMed ID: 22491071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytochrome b and Bayesian inference of whale phylogeny.
    May-Collado L; Agnarsson I
    Mol Phylogenet Evol; 2006 Feb; 38(2):344-54. PubMed ID: 16325433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A multi-gene estimate of phylogeny in the nightjars and nighthawks (Caprimulgidae).
    Han KL; Robbins MB; Braun MJ
    Mol Phylogenet Evol; 2010 May; 55(2):443-53. PubMed ID: 20123032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bayesian hypothesis testing of four-taxon topologies using molecular sequence data.
    Sinsheimer JS; Lake JA; Little RJ
    Biometrics; 1996 Mar; 52(1):193-210. PubMed ID: 8934592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A molecular phylogenetic survey of caprimulgiform nightbirds illustrates the utility of non-coding sequences.
    Braun MJ; Huddleston CJ
    Mol Phylogenet Evol; 2009 Dec; 53(3):948-60. PubMed ID: 19720151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global relationships of Bemisia tabaci (Hemiptera: Aleyrodidae) revealed using Bayesian analysis of mitochondrial COI DNA sequences.
    Boykin LM; Shatters RG; Rosell RC; McKenzie CL; Bagnall RA; De Barro P; Frohlich DR
    Mol Phylogenet Evol; 2007 Sep; 44(3):1306-19. PubMed ID: 17627853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular systematics and biogeography of the southern South american freshwater "crabs" Aegla (decapoda: Anomura: Aeglidae) using multiple heuristic tree search approaches.
    Pérez-Losada M; Bond-Buckup G; Jara CG; Crandall KA
    Syst Biol; 2004 Oct; 53(5):767-80. PubMed ID: 15545254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular phylogeny of Banza (Orthoptera: Tettigoniidae), the endemic katydids of the Hawaiian Archipelago.
    Shapiro LH; Strazanac JS; Roderick GK
    Mol Phylogenet Evol; 2006 Oct; 41(1):53-63. PubMed ID: 16781170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Phylogeny of chinese catfishes inferred from mitochondrial cytochrome b sequences].
    Peng ZG; Zhang YG; He SP; Chen YY
    Yi Chuan Xue Bao; 2005 Feb; 32(2):145-54. PubMed ID: 15759861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.